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INTRODUCTION 

THIS REVIEW surveys papers that have been published 
in the literature during 1986 covering various fields of 
heat transfer. The literature search was made very 
inclusive, however, the great number of publications 
made selections in some of the review sections necess- 
ary. 

Several conferences were devoted to heat transfer 
or included heat transfer topics in their sessions during 
1986. The AIAAjASME 4th Thermophysics and Heat 

Transfer Conference, sponsored by the American 
Institute for Aeronautics and Astronautics and the 
American Society of Mechanical Engineers, was held 
in Boston, Massachusetts, 2-4 June 1986. Several ses- 
sions dealt with heat transfer like conduction, two- 
phase systems, cryogenics, convection, radiation, 
porous media, internal flows, others were directed 
towards space applications like aerodynamic heating 
and ablation, high temperature heat pipes, immersion 
cooling of microaerodynamics, melting and freezing 
in energy systems and processes, and thermal design 
of spacecraft. The papers presented at the meeting can 
be obtained at the AIAA Library, AIAA Technical 
Information Service, New York. Some are also pub- 
lished in the archival journals of the Institute. The 
31st ASME International Gas Turbine Conference and 

Exhibition was held in Dusseldorf, Federal Republic 
of Germany, 8-12 June 1986. Sessions on film cooling 
and heat transfer with rotation dealt with heat transfer 
and many of the others included heat transfer con- 
siderations. The 1984 Gas Turbine Award was pre- 
sented to H. P. Hodson for his paper “Measurements 
of wake generated unsteadiness in the rotor passages 
of axial flow turbines”. Copies of the ASME papers 
may be obtained through the ASME Order Depart- 
ment. The Solar Thermal Technology Conference, 
sponsored by the U.S. Department of Energy and 
Sandia National Laboratories was held in Albu- 
querque, New Mexico, 17-19 June 1986. Among the 

tW. E. Ibele and S. V. Patankar also contributed to the 
preceding reviews. By an oversight the name W. E. Ibele 
was omitted from the list of authors of the 1984 review and 
the name S. V. Patankar from the list of authors of the 1985 
review. 

papers presented may be listed those given at sessions 
on the Sterling engine, on solar concentrators, and on 
energy storage. The Eighth International Heat Trans- 

fer Conference and Exhibition was held in San Fran- 
cisco, California, 17-22 August 1986. It was organized 
in keynote sessions, 28 papers were presented on vari- 
ous topics of heat transfer. Individual papers were 
presented in poster sessions. The opening session 
included a general lecture by A. W. Trivelpiece on 
energy research in the U.S. Department of Energy 
and two plenary lectures+one by E. R. G. Eckert 
on “The early history of international heat transfer 
conferences” and one by U. Grigull on “Fahrenheit, a 
pioneer of exact therrnometry”. The 1985 Max Jakob 
Memorial Award and Medal was presented to Frank 
Kreith and the 1985 Donald Q. Kern Award to Stan- 

ley J. Green. A recognition dinner honored Warren 
M. Rohsenow on his 65th birthday. A professional 
development short course program provided the 

possibility to update knowledge in numerical heat 
transfer and fluid flow in compact heat exchangers, in 

augmentation of heat transfer, in advances in thermal 
analysis and control of aerodynamic equipment, in 
heat transfer in packed, agitated and fluidized beds, 

in recent developments in heat pipes, and in exper- 
imental methods in heat transfer. All of the papers are 
contained in seven hardcover copies of the pro- 
ceedings available from Hemisphere Publishing Cor- 
poration, Washington, D.C. The 21st Zntersociety 

Energy Conversion Engineering Conference, sponsored 
by seven engineering societies, was held in San Diego, 
California, 25-29 August 1986. Among the various 

sessions may be mentioned those on Sterling engines, 
hydrogen energy, seasonal thermal storage, and 
nuclear energy. Copies of the proceedings may be 
purchased from the American Chemical Society, 
Department of Meetings and Divisional Activities, 
Washington, D.C. The XZZZ International Symposium 

on Heat and Mass Transfer in Cryoengineering and 
Refrigeration was organized by the International Cen- 
tre for Heat and Mass Transfer and held in Dubrov- 
nik, Yugoslavia, l-5 September 1986. Each of the 
eight sessions started with one or two invited lectures 
and then presented several individual papers. The fol- 
lowing subjects were covered : thermal insulation, heat 
transfer in refrigerants, heat and mass transfer in rnix- 
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tures, thermodynamic and thermophysical properties, 
freezing and melting, heat and mass transfer at very 
low temperatures, and cooling of superconducting 
devices. The majority of the papers will be published 
in a volume available from Hemisphere Publishing 
Corporation. The ASME Winter Annual Meeting, 
held in Anaheim, California, 7-12 December 1986, 
featured eight sessions in the field of heat transfer on 
topics like heat transfer aspects of fusion and fission 
reactors, combustion in multiphase systems and 
modeling of combustion systems, numerical methods 
in heat transfer, two-phase heat and mass transfer in 
the environment, heat transfer in waste heat recovery 
and heat rejection systems. The Karl A. Gardner 
Memorial Session was devoted to thermal/mechanical 
heat exchanger design. Preprints of the papers are 
available from the ASME Publications Department 
and many of the papers will also be published in the 
Journal of Heat Transfer. The 4th Miami International 
Symposium on Multi-phase Transport & Particulate 
Phenomena was held in Miami Beach, Florida, 15-17 
December 1986. Papers of interest to heat transfer 
researchers covered subjects like : modeling of multi- 
phase transport and heat transfer formulation. Inter- 
phase transfer in vapor-liquid systems, drying, boiling 
and condensation, pool boiling, critical heat flux, 
freezing and melting, and various measurement tech- 
niques. Inquiries about reprints should be directed to 
the Clean Energy Research Institute, University of 
Miami, Corral Gables, Florida. 

A number of books became available during the 
past year and they are listed in the references. A new 
journal also started publication. 

HIGHLIGHTS 

The following highlights illuminate areas of 
research which received special attention during the 
last year. 

A considerable number of papers presented com- 
puter solutions of various heat transfer problems. 
Some of them appear to be mainly motivated by the 
capability of the equipment used. 

Conduction in composite media received con- 
siderable attention with the majority considering the 
effect of contact resistance. Several new approaches 
were presented for the handling of the Stefan problem 
and the inverse conduction problem. Attention was 
also focused on conduction in materials subject to 
transient laser irradiation. 

Channel Jlow studies concentrated on complex 
geometries, non-Newtonian flows, and the effects of 
buoyancy forces. Boundary layerflows with stagnation 
regions, particularly on cylinders in crossflow and 
over axisymmetric bodies, found attention. The 
reduction in the number of papers on viscous heating 
of high-speed vehicles and the increase in the number 
of papers on turbulent heat and flow modeling are 
noteworthy. Papers on flows with separated regions 
considered cylinders in tandem and banks of cylin- 

ders. A surprising number of papers were concerned 
with acoustic effects on cylinders and plates with sep- 
arated regions. 

Heat transfer injuidized beds is one area for which 
our knowledge is mostly empirical. All papers except 
one in this area report the results of experimental 
studies. The opposite is true for heat transfer inpacked 
beds and porous media where the majority of papers 
are analytical. 

Noteworthy instrumentation developments include 
two papers on temperature measurement at ultra high 
pressure, ten papers on cryogenic temperature 
measurement and some on Raman scattering tech- 
niques developed for supersonic flows and flames. 
The majority of papers on external natural convection 
considered boundary layer flows over vertical flat 

plates and consist of numerical solutions to steady 
laminar flow problems. They include effects of tem- 
perature dependent fluid properties, viscoelastic fluids 
and coupling between wall conduction and adjacent 
convective flow. 

Boiling heat transfer continues to be an active field 
of experimental research. Boiling of specially prepared 
surfaces and direct contact boiling processes were 
studied. Transition boiling and boiling of mixtures are 
topics of increasing interest. Condensation rates of 
horizontal tubes were studied extensively as well as 
direct contact condensation to flowing and static 
liquids. Promotion of dropwise condensation con- 
tinues to be of interest. A number of analytical and 
experimental studies were concerned with properties of 
materials for specified applications. The majority of 
papers on solar energy considered the thermal per- 
formance of components such as solar collectors, 
solar ponds, and thermal storage systems. A few 
papers considered the performance of complete active 
solar heating and cooling systems, passively heated 
buildings, and solar radiation data. 

Heat transfer in thermal plasma has been of par- 
ticular interest in connection with electric arcs and arc 
applications. 

To facilitate the use of this review, a listing of the 
subject headings is made below in the order in which 
they appear in the text. The letter which appears adjac- 
ent to each subject heading is also attached to the 
references that are cited in the category : 

Conduction, A 
Channel flow, B 
Boundary-layer and external flows, C 
Flow with separated regions, D 
Heat transfer in porous media, DP 
Experimental techniques and instrumentation, E 
Natural convection-internal flows, F 
Natural convection+xternal flows, FF 
Convection from rotating surfaces, G 
Combined heat and mass transfer, H 
Change of phase-boiling, J 
Change of phase--condensation, JJ 
Change of phase-freezing and melting, JM 
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Radiation in participating media and surface 
radiation, K 

Numerical methods, N 
Transport properties, P 
Heat transfer application-heat pipes and heat 

exchangers, Q 
Heat transfer applications-general, S 
Solar energy, T 
Plasma heat transfer and MHD, U. 

CONDUCTION 

A number of studies were published in 1986 on 
heat transfer in composite media and inhomogeneous 
materials. The applicability limits of the homogeneous 
property model were considered in relation to the 
transient thermal behavior of directional reinforced 
composites [6A]. It was found that in many situations 

the homogeneous property model may lead to sig- 
nificant errors. The cooling by convection of an infi- 
nite parallel-sided composite slab was solved analy- 
tically by the Wiener-Hopf technique [20A]. An 
equivalent inclusion method, analogous to Eshelby’s 
method in elasticity, was proposed for solving steady- 

state conduction in composites [31A]. A new method 
based on the theory of systems was advanced for 
the calculation of heat flow as a function of surface 
temperatures in a multi-layer wall with time-depen- 
dent boundary conditions [50A]. A method was pre- 
sented for obtaining the effective thermal conductivity 
and specific heat in composite materials with an oscil- 
lating temperature field [49A]. It was claimed that the 
apparent thermal conductivity for steady-state con- 
duction is not sufficient to describe the transient 
behavior of an inhomogeneous medium [lOA]. A 
numerial Laplace inversion technique was employed 
to calculate the one-dimensional transient conduction 
within laminated binary materials [56A]. The steady- 
state thermal behavior in a strip-heated composite 
slab was considered [37A]. A method was proposed 
for extrapolating the temperature at a point in a com- 
plex structure with a specified heating regime on the 
basis of experimental data obtained in other regimes 
[7A]. A technique for analyzing multilayer heat con- 
duction, based on construction of appropriate coor- 
dinate systems, was formulated [39A]. 

The thermal contact resistance across an interface 
between solid layers is a difficult problem which 
received some attention. The last decade of work in 
steady-state contact heat transfer was reviewed, with 
146 references [43A]. A review with 143 references 
considered the problem of heat transfer across con- 
tacts under mechanical load [57A]. The Fenech- 
Rohsenow model was used to analyze the thermal 
conductance of 240 pairs of uranium dioxide- 
Zircaloy-4 contacts as a function of contact pressure 
[28A]; conductance values obtained by this method 
were found to be lower than with the Ross and Stoute 
correlation, the difference being attributed to the use 
of average fluid thickness in the latter method. The 

fundamental concepts in the theory of composite 
media were reconsidered in the context of a tem- 

perature discontinuity between the constituents [17A]. 
The effect of geometry on contact conductance of 
contiguous, rough interfaces was analyzed [53A]. 
Theoretical and experimental work on rough sphere 
contact, with microirregularities, between air and 
mineral oil was reported [64A]. The heat transfer rate 
from a heated sphere to a matrix containing passive 
spheres of a different conductivity was calculated 
using a multipole expansion scheme [21A]. 

Transient conduction in a cylinder imbedded in an 
infinite conductive medium with contact resistance 
was expressed in integral form by a Laplace transform 
and then solved numerically [61A]. The problem of 
a cylindrical electrical conductor with temperature- 
dependent properties, and carrying an alternating cur- 
rent, was formulated and solved numerically [46A]. 

The question of how long a cylinder ought to be before 
being considered infinite for thermal conduction was 
examined [22A]. Heat transfer from a set of parallel 
tubes of arbitrary diameters and positions, imbedded 
in a semi-infinite medium, was analyzed [4A]. The 
steady-state temperature distribution in a circular 
tube with internal convection and external asym- 
metrical heat flux was obtained by finite Fourier trans- 
form, with Biot number as a parameter, and numerical 
calculation [58A]. Heat conduction in a thin circular 
pipe with a circumferentially moving heat source is 
often approximated as a flat plate problem ; significant 
linear corrections to this approximation were 
obtained via an asymptotic expansion in terms of the 
ratio of pipe thickness to radius [48A]. The first ten 
eigenvalues needed for the computation of transient 
heat or mass diffusion in a hollow cylinder without 
azimuthal symmetry were calculated [25A]. 

Conduction in other circular bodies was analyzed 
in several works, including a discussion of the exis- 
tence of a classical solution of a mixed third boundary 
value problem on a sphere [36A] and a study of steady 
conduction in arbitrary conical systems [I lA]. For 
conical shells, a method was described which allows 
one to calculate the average temperature (through 
the shell thickness at a particular location) and 
temperature gradient directly from the theory of a 
Cosserat surface [54A]. The steady temperature dis- 
tribution for arbitrary paraboloidal systems was 
investigated [12A]. 

An exact analytical solution for a non-linear fin 
problem-a rectangular fin subject to a power 
law-type temperature dependence--was presented 
[55A]. A series solution was presented for the one- 
dimensional temperature distribution along a straight 
rectangular fin with variable surface heat transfer 
coefficient [9A]. The optimum dimensions of annular 
fin assemblies were studied [18A]. 

The Stefan problem, or the problem of phase 
change with a moving boundary, was treated by sev- 
eral authors. The melting process in a rectangular 
enclosure was analyzed, with a coupling between 
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solid-phase heat conduction and natural convection 
in the melt. The kinetics of the melting process were 
found to be significantly modified by this coupling 
[16A]. An integral method was presented which 
utilizes Galerkin functions for phase-change 
problems, which can accommodate problems with 
time-dependent temperatures at the boundary [44A]. 
The Backlund transformation was applied to reduce 
a class of moving boundary problems to a form which 
admits a class of exact solutions [51A]. A new method 
for solving the Stefan problem was proposed in which 
two associated conduction problems, each having 
fixed domains and the same boundary and initial con- 
ditions as the original problem, are introduced ; each 
includes a moving source as a supplementary con- 
dition [60A]. It was shown that the natural sign con- 
ditions in a general Stefan-like problem are sufficient 
to ensure that a solution exists globally [38A]. 

Analytical approaches to non-linear heat equations 
were considered in a work which utilized Bergman- 
type series solutions [52A] and in another which used 
group theory [23A]. Two studies considered the hyper- 
bolic heat equation which results from a finite speed 
of heat propagation [24A,30A]. 

A tabulation and numbering system for Green’s 
functions was proposed, for rectangular coordinates 
with 220 different sets of boundary conditions [14A]. 
Approximate integral transformation techniques for 
difficult conduction problems were discussed [63A]. 
Stochastic process theory was applied to heat con- 
duction in solids under various random conditions 
[35A]. A new decomposition method was proposed 
for approximate solutions to the heat equation [2A]. 
A simple method was proposed for accounting for 
temperature-dependent properties and boundary con- 
ditions [15A]. 

Steady conduction in an orthotropic plate with a 
foreign inclusion of arbitrary but small thickness was 
examined [47A]. Periodic on-off heating was con- 
trasted with continuous heating in a numerical study 

[19A]. 
The application of laser heating in industrial pro- 

cesses is posing an interesting class of conduction 
problems, involving both optical and thermal prop- 
erties of the irradiated medium as well as the intensity 
profile of the laser beam. An exact solution was pre- 
sented for the heating of a homogeneous slab induced 
by time-dependent laser irradiance [26A]. A general 
solution was obtained for a semi-infinite two-layer 
system heated with a cw laser beam of either Gaussian 
or uniform circular intensity profile [l A]. The three- 
dimensional conduction equation was solved numeri- 
cally for scanning cw laser-annealed multilayer struc- 
tures [66A]. In the case of irradiation at high power 
intensities the usual assumptions made in the Fourier 
theory may be inadequate, as the heat Aux through a 
given plane depends on the electron energy distri- 
bution. A model was introduced for analyzing the con- 
duction problem by means of electron kinetic theory 
[70A]. An integral solution was described to deal 

with complicated geometries undergoing both motion 
and pulsed laser irradiation [45A]. While not referring 
specifically to lasers, a related work used Fourier 
transform methods to solve the problem of a heat 
source moving steadily over a surface [27A]. 

The problem of finding the temperature dis- 
tribution on a surface given a set of time-varying 
measurements at interior points, the ‘inverse’ con- 
duction problem, received considerable attention. The 
one-dimensional inverse problem was treated by an 
initial value technique which does not require iteration 
and which yields estimates of the surface temperature 
and heat flux histories [32A]. A procedure was pro- 
posed which combines two different methods, the 
sequential function specification method of Beck and 
the regularization method of Tikhonov [13A]. A 
generalized function-specification approach was pre- 
sented for solving inverse problems which allows uni- 
fied treatment of multidimensional domains in rec- 
tilinear, cylindrical and spherical coordinates [29A]. 
The inverse problem can be approached through 
Duhamel’s integral, which is transformed into an 
equation which contains an unknown surface tem- 
perature and its derivatives [40A, 41A]. A method 
was proposed for two-dimensional inverse problems, 
involving a combination of a splitting procedure and 
the least squares technique [31A]. It was shown that 
the accuracy of an analytical solution of an inverse 
problem depends not only on the accuracy of the data, 
but also on the dimensions of the space-time domain 
[62A]. A transformation matrix was obtained for esti- 
mating the interface temperature distribution for a 
cutting tool, based on thermocouple measurements 
of interior points [69A]. A method was devised by 
determining the heat transfer coefficients during water 
cooling of metals, in which the temperature close to 
the surface was measured and used in an implicit finite 
difference calculation [8A]. The solution of inverse 
heat conduction problems with partially unknown 
system geometries was considered [34A]. 

Problems in thermoelasticity are often of interest 
from the heat conduction viewpoint. A sudden change 
in temperature produces a thermal shock in a material. 
The transient response of an infinitely long annular 
cylinder composed of two dissimilar materials, subject 
to a thermal shock, was investigated analytically 
[68A]. A general solution was obtained for the tran- 
sient two-dimensional temperature and stress dis- 
tributions in a thermally and elastically orthotropic 
slab with a rectangular boundary [67A]. An insulating 
half-plane sliding on the surface of a conductor gen- 
erates heat due to friction ; the resulting thermoelastic 
problem was solved numerically [5A]. A study was 
reported of the transient thermal and mechanical 
behavior of an infinite medium with a spherical cavity 
and a non-uniform heat supply [59A]. Calculations 
were presented of the temperature field in a bar of 
finite length, subjected to cyclic bending and unsteady 
thermal boundary conditions [65A]. 

The thermal stability of a partially insulated reac- 
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tive slab was analyzed ; this has an interesting appli- 
cation to the situation of exothermically active waste 
material which is in thermal equilib~~ with its sur- 
roundings but is suddenly subject to a small change 
in surface conditions, e.g. redevelopment of land for- 
merly used for domestic or industrial waste [33A]. 
The thermal stability of a Landau slab was examined 
under various commonly encountered boundary con- 
ditions [42A]. 

CHANNEL FLOW 

Research in channel flow is directed towards heat 
transfer augmentation in complex geometries, tur- 
bulent flow, multipbase effects, and non-Newtonian 
behavior. 

Among experimental studies pertaining to tur- 
bulent flow ref. [78B] investigates the convection of 
helium at supercritical pressure. Turbulent heat trans- 
fer in spirally enhanced tubes has been considered in 
ref. [7lB]. Experiments on heat transfer and pressure 
drop for flow in bends of circular cross-section have 
been reported in refs. [16B, 74B]. Reference [73B] con- 
tains a study of a shrouded fin array. An empirical 
correlation for heat transfer in circular tubes has been 
proposed [57B]. A near-wall temperature model has 
been applied to channel flow [lB]. Heat transfer cor- 
relation for liquids near the critical point are given 
[29B]. Experimentaf and analytical results for an 
asymmetrically heated duct are reported [72B]. 

Turbulent pulsed flow in a duct is numerically 
analyzed [2B]. The influence of buoyancy effects on 
turbulent flow are evaluated in ref. [SB]. An indirect 
method for studying heat transfer in a tube has been 
proposed [45B]. The mass transfer in the transitional 
regime of a wavy channel is considered [62B]. Tur- 
bulent heat transfer in ducts of cross-shaped cross- 
section is numerically predicted [60B]. Simultaneous 
convection and radiation in a turbulent channel flow 
is investigated [84B]. Heat transfer augmentation due 
to turbulence promoters is considered [65B]. The role 
of the structure of turbulence in heat and mass transfer 
is reviewed [IOB]. Predictions have been reported for 
turbulent inclined flow in rod bundles [3B]. Reference 
[63B] considers the effect of entrance configurations 
on tube ffow heat transfer. Property variations in tur- 
bulent flow are considered in ref. [42B]. Transient heat 
transfer to supercritical helium is investigated in ref. 

[7Bl. 
Some papers deal with new aspects of simple chan- 

nel flows. Transient forced convection with a stepwise 
variation of wall temperature is treated in ref. [20B]. 
The effect of axial conduction in channel and tube 
flows is considered in ref. [81B]. The conjugate prob- 
lem for the parallel plate channel is solved in ref. [47B]. 
The effect of viscous dissipation in channel and tube 
flows is considered in refs. [50B, 5lB]. Unsteady con- 
vection in a channel is experimentally investigated 
[22B]. 

Thermal instability in a tube is considered [59B]. 

The effect of viscosity variation on the heat transfer 
in a cooled tube is studied [8OB]. Mixed convection in 
the upward flow in a vertical pipe is investigated [76B]. 
An analytical solution is presented for the laminar 
entry region of a pipe [75B]. Mixed convection is 
considered for a vertical annulus in refs. [32B, 33B] 
and for a horizontal annulus in ref. [39B]. 

Steady laminar flow through an elliptic twisted pipe 
is investigated [44B]. Predictions have been reported 
for laminar inclined flow through tube banks [4B]. 
Forced convection with periodically varying inlet tem- 
perature is considered [19B]. Reference [38B] deals 
with the entrance region heat transfer for toluene. The 
influence of an axially varying heat transfer coefficient 
is described [79B]. Different mechanisms for con- 
vective enhancement in disk systems are investigated 
[.55B]. Enhancement of mass transfer due to a wavy 
wall is studied in ref. [61B]. Heat transfer due to radial 
flow between two disks is considered [56B]. 

The influence of combined convection and radi- 
ation in a duct flow is described f70B]. An inves- 
tigation is reported for heat transfer in corrugated 
tubes [3OB]. Experiments are reported for heat trans- 
fer on a finned wall in a rectangular duct [52B]. For a 
two-dimensional bifurcation, laminar forced con- 
vection is numerically analyzed [4OB]. Numerical solu- 
tions are also reported for forced convection in twisted 
circular-sector ducts [83B]. Temperature and velocity 
distributions have been obtained in a square duct 
[17B]. Computer simulation of a melt flow is presented 
[82B]. Laminar convection with chemical reactions 
has been considered in a rectangular duct and circular 
tube [12B, 13B]. 

Convective heat transfer under the infhrence of dis- 
crete heat sources is considered [35B]. Reference [58B] 
focuses on the effect of interwall spacing on heat trans- 
fer in a corrugated duct. Convection in a multi-pass- 
age circular pipe is studied in ref. [23B]. Heat transfer 
in smooth and buckled tubes is investigated [69B]. 
Convection studies have been reported for helically 
coiled rectangular ducts [36B]. Laminar heat transfer 
in a rotating duct is presented [49B]. Fully developed 
flow in plate-fin passages has been numerically 
analyzed [68B]. Heat transfer enhancement due to 
oscillatory flow in grooved channels is numerically 
studied [28B]. A combined experimental and ana- 
lytical investigation of internally finned triangular 
ducts has been reported [14B]. References [53B, 
54B] consider heat transfer around sharp bends in 
rectangular channels. Numerical results are pre- 
sented for convection in triangular plate-fin ducts 
[SB]. Convection in an elliptic duct is discussed 
[24B]. 

The combined radiation and convection in particle- 
laden flows is described [46B]. Measurements have 
been reported for mass transfer in the model of the 
respiratory tract [3lB]. Heat transfer to cryogenic 
liquid under centrifugal forces is considered [41B]. 
Convection in a flow past two spheres in a cylindrical 
tube is described in ref. [21B]. Studies have been 
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directed towards internal cooling of turbine blades 
[9B, 15B]. 

Among non-Newtonian channel flows, power-law 
fluids in ducts have been studied in refs. [18B, 48B]. 
The viscoelastic effects have been taken into account 
in refs. [34B, 43B]. Heat transfer to non-isothermal 
non-Newtonian flows is considered in refs. [6B, 25B, 
85B]. Heat transfer to highly viscous rheological flows 
is presented in ref. [25B]. Laminar flow in a stenosis 
is studied in ref. [77B]. 

Multiphase flow and heat transfer in channels are 
the subject of a number of papers [27B, 37B, 63B, 
66B]. Three-dimensional modeling has been applied 
to two-fluid flows in elbows and bends [ 11 B]. 

BOUNDARY-LAYER AND EXTERNAL FLOWS 

Several studies in this category dealt with the fun- 
damentals of convection and turbulent transport. It 
was shown that care is necessary when comparing data 
for average heat transfer coefficients due to variations 
with position, particularly when some of the sources 
for those data are experimental and some are theor- 
etical [5C]. A numerical solution of the Falkner-Skan 

equation was made for a laminar boundary layer using 
optimization techniques [3C]. Recent developments 
in thermodynamics of irreversible processes were 
applied to obtain rapid analytical solutions in Blasius 

flow [59C]. 
Studies of fundamentals in turbulent flows include 

a numerical study in a turbulent free shear flow [ 11 C] 
and a study of turbulent motion modeled by the invis- 
cid two-dimensional motion of point vortices [22C]. 
The spectrum of the latter was close to a Kolmogorov 
spectrum. The evolution of the temperature field in a 
thermal mixing layer downstream of a temperature 
step in grid turbulence was studied [46C]. The data 
was shown not to be consistent with self-similarity 
although second-order quantities such as heat flux 
coefficient and centerline temperature variance 
appeared to have reached their equilibrium values. 
An asymptotic solution was obtained for the Euler 
equations in the shock layer near the stagnation line 
for separationless flow past a blunt body in the far 
wake behind another body [ 18C]. Measurements were 
made of Reynolds shear stress profiles and lateral heat 
flux profiles in a nearly self-preserving region of the 
turbulent wake of a heated circular cylinder-they 
were compared with calculations [8C]. The com- 
parisons do not support the need for determining a 
new virtual origin, as previously suggested. Results of 
experiments conducted in the thermal wake behind an 
axisymmetric body were used to evaluate the radial 
profiles of different terms of the temperature fluc- 
tuation balance equation [ 12C]. It was shown that the 
relationship between dissipation and turbulent 
diffusion is roughly the same for the flows compared. 
The idea of semi-preservation in non-isothermal 
cascade-wake-flows was presented [17C]. It was 
described in terms of characteristic velocity and tem- 

perature scales. An experimental study of the tem- 
perature field in round turbulent jets showed that the 
rate of fluid entrainment is a strong function of nozzle 
design [52C]. 

Axisymmetric and stagnation point studies include 
an experimental investigation of the unsteady heat 
transfer on the heated cylinder and blunt body stag- 
nation regions [56C] and supersonic flow about 
axisymmetric bodies [75C]. The second study showed 
that substantial errors may result from the use of 
standard formulas without allowance for streamwise 
wall temperature gradient effects. A numerical inves- 
tigation was performed to determine the heat/mass 
transfer from upstream-facing blunt faces of bodies 
situated in a uniform flow [35C]. Unsteady laminar 
compressible flow with mass transfer at the stagnation 
point was computed for different values of parameters 
which characterize the unsteadiness in the free-stream 
velocity, the wall temperature, the mass transfer rate 
and the variation in gas properties [7OC]. A theoretical 
analysis for heat transfer from axisymmetric bodies 
in non-Newtonian fluids was presented [58C]. Asymp- 
totic expressions give accurate predictions with high 
or low Prandtl numbers. Scaling relations were 
derived to show the influence of ballistic coefficient 
and lift-to-drag ratio on heating during gliding entry 
into the atmosphere [66C]. The effect of massive blow- 
ing on a laminar boundary layer along the stagnation 
line of an infinite swept cylinder was studied, where 
the free-stream velocity and blowing rate vary with 
time [71C]. Hypersonic finite-rate chemically reacting 
flows over an ablating carbon surface were analyzed 
to study the effects of ablating carbon [62C] and the 
interaction of a premixed flame with the flow near 
the stagnation point was considered under conditions 
where the flame stands clear of the boundary layer 
and pushes the incident flow away from the body 
[19C]. The influence of the shape of a body in motion 
in a hydrogen-helium atmosphere on radiant heat 
transfer was numerically evaluated [38C]. Heat trans- 
fer in transitional and turbulent flows along a circular 
rod was computed [42C]. 

Several studies dealt with the fundamentals of tur- 
bulence and turbulence modeling including one which 
presented a cascade model of redistribution of energy 
and temperature fluctuations over the spectrum in 
two-dimensional flows [2OC] and one which discussed 
the transformation of energy within the boundary 
layer [65C]. Another presented a three-parameter 
model of turbulence for use in heat transfer cal- 
culations [45C]. A first integral of the equation relating 
mean temperature and heat flux was obtained which 
permits relating moments of the heat flux distribution 
to derivatives of coefficients in the mean temperature 
representation within a thermal mixing layer [44C]. 
The structure and development of the temperature 
field behind a line source in grid turbulence was evalu- 
ated [64C]. Molecular diffusion and viscosity had an 
important influence on temperature fluctuation and, 
it was shown, must be specifically modeled. A solution 
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algorithm was developed for calculation of turbulent 
reacting flows [69C]. Calculations were made of a 
confined turbulent diffusion flame. 

Two papers described flows with coherent struc- 
tures. In one, a three-dimensional and time-dependent 
model was used to study the non-linear interactions 
between thermal convective motions, rotation and 
imposed flows with vertical shear [26C]. The effects of 
shear on convection produce longitudinal rolls aligned 
with the shear flow. In a second, measurements in a 
buoyant plume and vortex pair formed above a heated 
wire were made [61C]. 

Management of the flow was the theme of several 
papers. In the first, measurements of Reynolds anal- 
ogy factors were made for boundary layer flows al- 
tered by stacked arrays of large-eddy breakup devices 
or ‘turbulence manipulators’ [43C]. The data show 
that heat transfer is sensitive to flow history. In the 
second, experimental results and methods for cal- 
culating heat exchange with cavitating turbulators of 
various geometries were presented [7C]. Heated tur- 
bulent air jets were used to study the enhancement of 
convection heat transfer to the stagnation region of a 
circular cylinder [2X]. Results show that increases in 
stagnation point heat transfer are more susceptible to 
free-stream turbulence than indicated in earlier inves- 
tigations. Temperature distributions and heat transfer 
rates were measured for helical ribbon impellers in 
vessels [57C]. A critical impeller speed for eliminating 
temperature gradients was established. 

A series of papers included mass transfer. In one, 
the results of laboratory studies of the heat and mass 
transfer from a heated evaporating liquid into a tur- 
bulent unstably stratified impinging cold air flow were 
presented [74C]. A formula is presented for Stanton 
numbers with air over smooth and wavy surfaces. 
Experimental results for mass transfer at the base 
surface of an open cylindrical cavity and a cavity with 
a constricted opening (Helmholtz resonator) were pre- 
sented [63C]. There were two local maxima with 
increasing cavity depth; the first is due to reattach- 
ment and the second may be due to fluid-dynamic 
oscillations. Deposition rates of submicrometer par- 
ticles on ribbed surfaces were compared with em- 
pirical formulation for heat transfer under similar 
conditions [53C]. Caution was advised when using 
this technique. 

Gas turbine heat transfer was the topic of the fol- 
lowing group of papers. Time-averaged heat-flux dis- 
tributions obtained for the blade of a full-stage rotat- 
ing turbine were presented [13C]. In a continuation 
paper, a detailed description of a technique using thin- 
film heat flux gauges for obtaining time-resolved heat 
flux was given [IX]. The magnitude of the heat-flux 
fluctuation resulting from vane-blade interaction was 
large by comparison with the time-averaged heat flux. 
Detailed measurement of heat-flux distributions for 
the nozzle guide vane airfoil, the hub and tip endwalls 
and the blade for a low-aspect-ratio turbine stage were 
presented [14C]. Results were compared with results 

of local flat-plate prediction techniques. Heat transfer 
measurements were performed along a cooled flat 
plate with various free-stream turbulence levels, pres- 
sure gradients, and cooling intensities [54C]. Results 
of an experimental study of the local heat transfer on 
the end surface of a gas turbine stator were presented 
[37C]. A single similarity equation accounting for the 
influence of streamline curvature, three-dimensional 
nature of the flow, flow acceleration and flow lami- 
narization was obtained. 

Several papers dealt with fins, finned surfaces and 
heat exchangers. A method for a combined convection 
and fin conduction solution was described [21C] and 
heat transfer from an array of parallel longitudinal 
fins to a film passing through the interfin spaces was 
analytically and experimentally studied [32C]. Results 
of an experimental investigation of convective trans- 
port at the surfaces of a plane transverse fin array 
exposed to steady turbulent flow were presented [68C]. 
The effect of yaw on heat transfer from a finned cir- 
cular cylinder was measured [55C] and laminar flow 
heat transfer was computed for a situation where fluid 
moves along a parallel plate channel with one wall 
insulated [ 1 OC]. 

Papers on manufacturing processes included one in 

which similarity solutions were developed for heat 
transfer on a continuously accelerated sheet extruded 
in an ambient fluid of lower temperature [lC]. Melt- 
spinning and the cooling of extruded metal plates are 
applications. Also, heat transfer rates occurring in 
the laminar boundary layer on a continuous moving 
surface which has arbitrary surface velocity and tem- 
perature were computed [3lC] and the conjugate 
problem was addressed [36C]. Results of a laminar 
flow, micropolar boundary layer study in axial flow 
along a continuous moving fiber were presented [24C]. 

Several papers were presented which deal with heat 
transfer on the space shuttle and space planes [2C, 
6C, 48C, 67C]. One related paper discussed the 
shuttle’s hot-gas jets for ice suppression [6OC] and an- 
other the carbon ablation on a re-entry body [3OC]. 

Studies on fluid property variation effects included 
one on the influence of temperature-dependent fluid 
properties on laminar boundary layer wedge flows 
[27C] and another where a method was suggested for 
calculating subsonic gas flows with great temperature 
drops [47C]. A theoretical analysis was proposed for 
heat transfer from external surfaces immersed in non- 
Newtonian fluids where integral equations were trans- 
formed into characteristic equations which can readily 
be solved [5OC]. An asymptotic expression was derived 
for a speedy estimation of heat transfer to non-New- 
tonian fluids [5 1 C]. The motion of a sphere in a rare- 
fied gas was considered focusing on the role of tem- 
perature variation in the Knudsen layer [4OC]. Results 
show that velocity and pressure in the layer and the 
drag on the sphere are not sensitive to this variation. 
Molecular-kinetic methods were used to investigate 
the heat transfer on the surface of a spherical particle 
for arbitrary Knudsen numbers and temperature 
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differences [23C]. An investigation of a reaction wave 
igniting initially cold matter, with allowance for the 
physical processes occurring in a completely ionized 
medium, was presented ; electron heat conduction, 
radiative losses and energy transfer between electrons 
and ions were included [41C]. An analysis was pre- 
sented for heat transfer characteristics of a thermo- 
micropolar fluid flowing through a channel fol- 
lowed by a convergent or divergent section [4C]. An 
increase in wall mass transfer was reported for liquid- 
gas flow of drag-reducing fluids [34C]. 

Studies of flows influenced by external effects 
include an experimental study on heat transfer to a 
single drop translating in an immiscible liquid on 

which an electric field was imposed [33C]. A remark- 
able enhancement of heat transfer was obtained due 
to induced circulation. Heat transfer within counter- 
oscillating slugs of fluid was examined where the axial 
heat flux pulsates at twice the base oscillation fre- 
quency [39C]. Under tuned conditions, heat transfer 
was orders of magnitude larger than that present in the 
absence of oscillations. Unsteady laminar boundary 
layers contiguous to self-similar flows were studied 
[ 16C]. When there is no heat transfer through the wall, 
the boundary layers are self-similar. The applicability 
and implications of the finite velocity of transport 
hypothesis are examined utilizing the large eddy inter- 
action model [29C]. The model explains the manner in 
which turbulence relaxes following sudden curvature 
removal. The effect of surface roughness on adiabatic 
wall temperature was investigated [28C]. 

Among papers concerned with flow influenced by 
gravity was one where wave numbers were calculated 
for axisymmetric Rayleigh-Benard convection [9C] 
and one in which a continuous transformation algo- 
rithm was shown to be appropriate for the solution 
of a turbulent, buoyant jet [72C]. The heat transfer 
characteristics of laminar combined convection from 
an isothermal sphere were numerically evaluated 
[73C]. The average Nusselt number, the location of 
separation, the drag and the flow and temperature 
fields were presented. Transport processes in tur- 
bulent liquid films undergoing heating or surface 
evaporation were analyzed [49C]. Correlations similar 
to those used in conventional internal and external 
flows were recommended. 

FLOW WITH SEPARATED REGIONS 

Within this category, there were many studies deal- 
ing with cylinders in crossflow. In one, the Navier- 
Stokes and energy equations for laminar flow were 
solved by expressing temperature as well as the stream 
function in truncated Fourier series [8D] and, in 
another, the unsteady flow was numerically evaluated 
[21D]. Experimental results were presented for heat 
transfer around rectangular cylinders [7D]. The heat 
transfer on the rear face increases when the side face is 
lengthened to the point where the separated boundary 
layer reattaches. Heat transfer from a cylinder in 

crossflow was measured-a dummy cylinder and an 
adjacent wall were unheated and the flow near the 
wall was laminar, then turbulent [24D]. The clearance 
between the cylinder and the wall was varied. Results 
of an experiment of heat transfer characteristics of 
two elliptic cylinders placed in a tandem arrangement 
were presented [19D]. Their angles of attack were the 
same in magnitude, but opposite in sign. In a similar 
test, heat transfer characteristics of two elliptic cyl- 
inders in tandem were evaluated [20D]. It was found 
that angle of attack and separation distance were 
important. Mass transfer coefficients were evaluated 
for a cylinder in crossflow where the cylinder 
had a step in diameter in the center of the test 
section [14D]. Heat transfer rates around a circular 
cylinder above a plane boundary were measured 
[lD]. The mean Nusselt number reached a maxi- 
mum when the separation distance was equal to about 
one cylinder radius. Experimental results were pre- 
sented for heat transfer from a cylinder under 
cavitation condition [13D]. The heat transfer on the 
down-flow part of the cylinder surface almost doubled 
for the cavitation case over one without cavitation. 
The effect of a relatively high-frequency audible sound 
field on cylinder heat transfer augmentation was mea- 
sured [lD]. Acoustic streaming was shown to augment 
heat transfer; a critical level of 148 db was found. In 
another study, it was shown that acoustic streaming 
increases heat transfer mainly on the speaker side with 
the effect depending more on the streaming velocity 
than on sound pressure level [l lD]. The effect of 
sound fields on heat transfer from a flat plate having 
separated and reattaching flow was measured [4D]. 
Increasing the sound level decreased the length of the 
separation bubble. The effect of vibrations on local 
and average heat transfer was evaluated [9D, lOD]. 
Vibration enhances heat transfer and leads to tran- 
sition at lower Reynolds number, as does free-stream 
turbulence. An experimental technique for obtaining 
local heat flux was presented and data were discussed 
for heat transfer from a cylinder, cylinders in tandem 
and cylinders in a tube bank [2D]. For tube banks, 
the average heat transfer coefficient became invariant 
by the third row. In a similar study, heat transfer 
over smooth bundled tubes in transverse flow was 
discussed [25D]. Numerical results were presented for 
laminar flow and heat transfer in staggered tube banks 
and a new expression was proposed for predicting the 
average heat transfer [SD]. The effects of transversal 
and longitudinal pitches and the effect of tube rough- 
ness were experimentally evaluated [17D, 32D]. Tube 
roughness has a significant effect. Measurements of 
heat transfer around a two-dimensional blunt body 
showed an order of magnitude increase across a small 
separation bubble, when one exists, where the leading 
edge joins the body [3D]. Applications include turbo- 
machinery airfoils. Heat transfer rates in the stag- 
nation region of the junction of a circular cylinder 
perpendicular to a flat plate were measured [6D]. The 
influence of the cylinder on the flat plate extended 
beyond three-fourths of a cylinder diameter. Experi- 
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ments were performed to document the effects of 
vibration and rotation on heat transfer from spheres 
[lSD]. The authors concluded that air velocity fluc- 
tuations and rotational movement of particles on heat 
transfer cannot be neglected in gas-solid two-phase 
flows. 

Several studies dealt with an abrupt change in sur- 
face geometry which leads to separation. In one, heat 
transfer characteristics of forced convection over an 
inclined flat plate of finite width were investigated 
[18D]. They depend considerably on the shapes of the 
leading edge and the angle of attack. The influence of 
an unheated frontal end of a cylinder on its heat 
transfer in longitudinal flow was studied [27D]. 
Differences were found in the zone of flow separation. 
The effects of free-stream turbulence and of separa- 
tion angle on heat transfer characteristics in the 
reattachment region behind a backward-facing step 
were investigated [ 16D]. The effect of turbulence 
varied with angle. Experimental results were presented 
for turbulent channel flow with an abrupt area expan- 
sion [26D]. The heat transfer characteristics were 
influenced by the large temperature gradient between 
the bubble and the main flow in the upstream sep- 
arated region. A numerical study of this problem used 
a full Reynolds stress model for the Navier-Stokes 
equations and an algebraic model for the thermal 
fluxes [22D]. In a similar study, Mach 2.6 flow passed 
over a back-stepthe compressible effects were docu- 
mented [23D]. Heat transfer with compressible flow 
and separation in the presence of a step-cavity profile 
of the divergent part of the Lava1 nozzle was presented 
[28D]. The influence of a protrusion of the surface 
was measured [31D]. The recovery of equilibrium flow 
was not reached during the relaxation process after 
reattachment. 

An equation presented for flow in a bubble column 
was used to estimate both the blending in the liquid 
phase and the heat transfer on heated or cooled sur- 
faces of bubble columns [29D, 30D]. 

HEAT TRANSFER IN POROUS MEDIA 

A very large number of papers dealt with computer 
solutions of buoyancy-induced flow in saturated 
porous media considering various geometries, bound- 
ary conditions, for Darcy flow and for conditions 
where inertia effects cannot be neglected. This section 
of heat transfer in porous media will be organized in 
the way that papers studying detailed transfer pro- 
cesses are collected in the first section whereas the 
following sections enumerate briefly specific geome- 
tries and boundary conditions. 

Multiple solutions for buoyancy induced flow in 
saturated fluids are discussed in refs. [ 1 DP, 2DP] and 
the path through bifurcation to chaos occurring with 
increasing Rayleigh number is considered in ref. 
[3DP]. Thermodynamic modeling [4DP] using irre- 
versible thermodynamics establishes that Brinkman’s 
law is justified. Effects of flow inertia are considered 

in ref. [5DP]. Effective heat transfer parameters 
developed for transient flow [6DP] are claimed to 
unify all previous solutions. A boundary layer 
approximation for natural convection in stratified 
porous media heated from the side [7DP] is compared 
with numerical calculations. Radiative and con- 
ductive heat transfer [8DP] describe heat transport in 
unsteady high temperature gas streams. Impulsively 
heated fluid streams percolated through fixed beds 
[9DP] spread in the form of temperature waves for air 
flowing through a bed of glass beads but as steepening 
waves in the flow of CO* through a bed of lead beads. 

Conjugate heat transfer from vertical fins to a satu- 
rated porous medium are discussed in refs. [lODP, 
llDP]. Analyses are also presented for steady and 
unsteady heat transfer from vertical plates [12DP, 
13DP] and vertical cylinders [ 14DP, 14aDP]. Vertical 
and horizontal annuli are treated in refs. [ 15DP- 
17DP]. Analyses of vertical and horizontal channels 
are presented in refs. [18DP-21DP]. Free convection 
in an undulating porous cylinder [22DP] and the stab- 
ility of natural convection flow are analyzed in refs. 
[22DP, 23DP] as in the free convection in a two- 
dimensional porous loop [24DP]. Benard convection 
is studied at various Prandtl numbers in refs. [25DP, 
25aDP]. Geothermal applications suggested the 
analysis of thermally-driven shallow cavity flows 
[26DP]. Free boundary flow through a porous body 
and flow along a heated horizontal cylinder [27DP, 
28DP] yielded to numerical calculations. 

Much smaller is the number of papers dealing with 
unsaturated porous medium. Unsteady heat and mass 
transfer creates convective flow in a porous slab 
[29DP]. Accumulation and migration of moisture in 
insulations occurs by simultaneous heat and mass 
transfer [30DP]. An analytical paper is concerned with 
Soret and Dufour effects and double diffusion [31DP]. 
The validity of experimental models is investigated by 
an analysis [32DP]. Unsteady simultaneous heat and 
mass transfer with phase change occurs in three suc- 
cessive regimes [33DP]. At first the condensate is 
immobile and accumulates with time, then it becomes 
mobile generating unsteady concentration and tem- 
perature profiles, and finally the situation approaches 
asymptotically a quasisteady condition. The role of 
capillarity is demonstrated [34DP] to enhance heat 
transfer in partially-saturated systems by an order of 
magnitude. An analysis considers natural convection 
of gas/vapor mixtures in a horizontal rectangular 
channel [35DP]. Heat transfer between a granular 
structure and liquid 3He is studied by a microscopic 
calculation [36DP]. The hydrodynamic equations 
describing thermal convection and non-linear effects 
of superfluid 3He-4He mixture are derived [37DP] 
and two-fluid effects are calculated. 

Considerably smaller is the number of experimental 
investigations which are looking again at different 
geometries and boundary conditions of porous media. 
Papers in this field deal with transient and steady 
conditions in coaxial vertical cylinders [38DP, 39DP], 
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in horizontal cylinders [40DP], in stratified porous 
media [4lDP], in complex internal geometries [42DP], 
adjacent to a horizontal surface submerged in a 
porous medium saturated with water at the density 
extremum [43DP]. Calculations and experiments on a 
horizontal annulus filled with two concentric layers 
of glass balls of different size [44DP] resulted in the 
temperature and moisture field and a relation of Nus- 
selt number as a function of Rayleigh number. Heat 
transfer in a mixed particle bed formed by two sizes 
of glass beads was measured in ref. [45DP]. An expla- 
nation of the formation of channels in debris beads 
during boiling of a liquid is offered in ref. [46DP]. 
Dryout in a bed of inductively heated steel balls of 
various sizes was measured [47DP] at various pres- 
sures. The temperature distribution and the freezing 
front movement of liquids filling the voids between 
glass and aluminum spheres was measured [48DP]. A 
simultaneous analysis gave good agreement for the 
glass bed but not for the aluminum bed. The heat 
transfer performance of a trickle flow of gas through 
regularly stacked packing was measured [49DP]. The 
results served to develop a model based on single 
particle flow. 

Experimental investigations dominate in the field 
of heat transfer in jhidized beds indicating the situ- 
ation that no general analytic approach has yet been 
developed. The papers in this field deal with heat 
transfer to emersed horizontal tubes [50DP-52DP], 
with horizontal tube banks [53DP, 54DP], with ver- 
tical tubes [55DP, 56DP], and with the characteristics 
of vertical thermal and capacitance probes [57DP]. 
New experimental data of the residence time of solid 
particles close to submerged heating surfaces have 
been presented [58DP]. The following correlation for 
heat transfer between immersed and fluidized beds of 
large particles was obtained from experiments [59DP] 

Nu = 5.95(1 -E)*‘~ +0.55Ar0-3 ReO.* Pv”~ 

in which E indicates the porosity and Au the Arch- 
imedes number. Wall-to-bed heat transfer measure- 
ments [60DP] resulted in data for the effective thermal 
conductivity and a Colburn type equation describing 
the heat transfer coefficient [61DP]. The results of heat 
transfer measurements in two- and three-phase slurry 
fluidized beds [62DP] demonstrated that the surface 
renewal model satisfactorily predicts heat transfer. 
Two analytic papers developed a continuum model 
[63DP] for heat transfer in particulate flows and a 
model for fluidized-bed drying of granular solids 
[65DP]. A correlation for the local Nusselt number as 
a function of Grashof number based on previously 
published data describes heat transfer for flowing 
packed particle beds in circular tubes [64DP]. 

EXPERIMENTAL TECHNIQUES AND 

INSTRUMENTATION 

A method was described for linearizing the out- 
puts of standard thermocouples, involving an analog 

fourth-order polynominal curve-fitting circuit [44E]. 
An improved design was presented for a thermo- 
couple rake for use in combustion studies [14E]. A 
comparison was reported of the frequency response 
of intrinsic thermocouples and encapsulated, beaded 
thermocouples in liquid sodium flows [27E]. The dis- 
tortion in the steady two-dimensional temperature 
field which exists around a surface thermocouple 
was investigated [3E]. Thermoelectric instabilities in 
nickel-based thermocouples in the mineral-insulated 
metal-sheathed format were investigated up to 1100°C 

WI. 
Thin-film gauges enable the measurement of surface 

heat transfer rates [17E]. A thin-film gauge was 
developed which allows measurements of heat flux 
fluctuations up to 100 kHz [ 18E]. A thin-film electrical 
resistance heater embedded in an isolated copper cone 
was used with a differential thermocouple to measure 
heat flux from a surface with uniform temperature 

[5El. 
A two-color pyrometer was developed for mea- 

suring the surface temperature of metal chips formed 
during high-speed machining [26E], and a radiation 
pyrometer with optical fiber was described for mea- 
suring the grinding temperature in the surface layer of 
a workpiece [50E]. The temperature of microscopic 
areas within a head/tape interface can be measured 
using an infrared radiometric technique [22E]. Radi- 
ometers for measuring radiative heat fluxes in large, 
sooty pool fires were designed to withstand severe 
environments and to keep the sensing area free of soot 
[32E]. The accuracy of a new optical fiber ther- 
mometer was demonstrated by measuring the freezing 
points of gold and silver [16E]. A fiber-optic ther- 
mometer based on the change in absorption charac- 
teristics of a doped glass plate was demonstrated 
[21E]. 

Raman scattering was used to measure the trans- 
lational temperature as well as the molecular velocity 
and static pressure of nitrogen in a supersonic wind 
tunnel [19E]. Pulsed Raman scattering from a tur- 
bulent hydrogen jet diffusion flame was used to deter- 
mine zonal averages, intermittency, and conditional 
probability density functions for temperature and 
other quantities [37E]. A method was reported using 
coherent anti-Stokes Raman spectroscopy to measure 
temperatures in the near-wake recirculating flow of a 
bluff-body-stabilized diffusion flame [47E]. An inter- 
ferometric optical fiber sensor was constructed using 
a highly birefringent monomode optical fiber sensing 
element, and was demonstrated for measuring furnace 
temperatures [25E]. Passive uhf emission was used 
to measure electron temperature in solid-fuel MHD 
generators [20E]. A review with 131 references was 
presented on modern developments in flow visu- 
alization [43E]. 

There is considerable interest in instrumentation 
for cryogenic heat transfer, particularly in connection 
with superconducting magnet applications. The stab- 
ility of 25 Chinese germanium resistance ther- 
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mometers on thermal cycling between 20 and 239 K 

was reported, along with their thermometric prop- 
erties in the range 1-28 K [7E]. Another report inves- 
tigated the performance of Russian germanium resis- 
tance thermometers [8E]. The properties of some Ru02 
thick-film resistors were studied for their use as ther- 
mometers at temperatures in the range 0.0154 K and 
in magnetic fields up to 5 T [9E]. The resistance and 
magnetoresistance of thick-film chip resistors was 
measured in the range 0.015-80 K in magnetic fields 
up to 20 T [30E]. A thin-film platinum resistance 

thermometer was investigated for temperature 
measurements in the range 2&300 K in a 5 T magnetic 
field [24E]. A glass thermometer and a nuclear orien- 
tation thermometer were compared for operation at 
temperatures below 40 mK in magnetic fields up to 
6 T [40E]. It was shown that for carbon resistance 
thermometers at very low temperatures, the tem- 
perature dependence is often well represented by a 
l/3-power law [46E]. In the temperature range 77-150 
K, Eu3+-doped fluoride glass can be used as a thermo- 
optic transducer because its absorption at 2.2 pm 
is temperature-dependent; accuracy of 0.5 K was 
claimed [33E]. An apparatus was reported for mea- 
suring the thermal conductance of pressed brass 
contacts at liquid helium temperatures [41E]. A 
four-terminal a.c. bridge was designed for use with 
low-temperature resistance thermometers [lOE]. 

Ultrahigh pressures present a particular challenge 
for temperature measurement. A thermometer based 
on ruby R-line luminescence was shown to be useful 
in diamond-anvil cells, for temperature measurements 
in the range l&100 K and pressures up to 120 kbar 
[52E]. A rhodium +0.5% iron-chrome1 thermo- 
couple pair was demonstrated for measuring tem- 
peratures in a high pressure cell: it was used in a 
berylliumcopper cell with pressures up to 1.5 GPa, 
over the temperature range 4-300 K [23E]. 

A simple analog thermistor thermometer, using 
switched bridge components chosen to keep bridge 
sensitivity constant, was described for temperature 
measurements in the range &lOO”C [38E]. A diode 
bridge sensor for temperatures in the range 25-100°C 
was fabricated and tested [lE]. Response time cor- 
relations for industrial temperature sensors were 
reported [12E]. A method was devised for com- 
pensating for the disturbance made by a heat flow 
meter by placing a separate surface heater on the 
meter surface [15E]. The errors in surface-mounted 
heat flux sensors for buildings were analyzed [48E]. 

In miscellaneous instrumentation developments, a 
platinum wire probe for measuring temperature tur- 
bulence in the atmospheric boundary layer was 
described [3 1 E] ; a survey of the circular and square 
edge effects provides the information necessary to 
choose the appropriate apparatus size for a measure- 
ment of thermal resistance of a specimen of insulation 
material of arbitrary thickness [35E] ; an encapsulated 
therrnochromic liquid crystal, in a packaging arrange- 
ment suitable for gas flows, was described for mapping 

local heat transfer coefficients [4E] (there was sur- 

prisingly little work on liquid crystals reported in 
1986) ; a calorimeter was developed for the purpose 
of evaluating thermodynamic and kinetic properties 
in chemical reactions associated with manufacturing 
processes [45E] ; and the analogy between heat and 
mass transfer allows for the measurement of con- 
vective heat and mass transfer coefficients based on a 
wet-bulb thermometer exposed to an imposed heat 
flux [28E]. Contact and gap resistances in extruded 
bi-metallic finned tubes were measured by a new tech- 
nique [13E]. 

A number of new experimental techniques were 
developed for measuring properties associated with 
heat transfer. An apparatus was designed for mea- 
suring the thermal conductivity of high-temperature 
materials such as stainless steel and molybdenum, 
over the range 40&l 100 K [36E]. The thermal con- 
ductivity of liquids was measured by means of a new 
hot-wire instrument [l lE]. A technique was developed 
for measuring the thermal diffusivity in one of the 
layers of a two-layer sample by imposing a triangular 
heat-pulse, as might be obtained from an Nd-glass 
laser [53E]. A data-acquisition system was discussed 
for measuring thermal diffusivity and propagation 
properties of thermal waves, based on the phase shift 
and amplitude ratio of the temperature oscillation at 
two fixed points [42E]. A device for in situ use in solar 
collectors was described, which measures the mass 
flow-specific heat product [39E]. A laser pulse method 
combined with a transient calorimetric technique was 
developed for measuring the total hemispherical 
emissivity of metals ; the system was demonstrated for 
platinum in the range 1200-1600 K [34E]. Laser-pulse 
calorimetry applied to determining the thermal con- 
ductivity of molten oxides at high temperature was 
reviewed [5 1 E]. 

Finally, new experimental techniques were de- 
scribed for measuring the thermal conductivity of 
oyster shells [49E] and the conductivity of the heavy 
oil sands of Trinidad [29E] ; and a method was 
described for measuring the thermal diffusivity of 
spherical produce [2E]. It was applied to apples, 
oranges and potatoes. 

NATURAL CONVECTION-INTERNAL FLOWS 

Buoyancy driven flows are of interest to researchers 
from a number of disciplines including Applied Math- 
ematics, Physics, and Engineering (both Science and 
Applied). Non-linear phenomena, transformation to 
chaos, application to geological and astrophysical sys- 
tems, as well as more mundane problems continue to 
draw attention as indicated by the large number of 
studies published each year. In the present section, 
attention is directed to buoyancy driven flows in 
enclosures. These include horizontal layers heated 
from below and effects in layers of finite horizontal 
extent ; flows in two-fluid systems where one layer of 
fluid is superimposed on another ; double diffusion ; 
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vertical slots and other geometries where differential 
lateral heating is present ; heat transfer from one solid 
body to its surroundings including concentric and 
eccentric cylinders ; convection in porous media ; 
thermocapillary flows ; combined forced and natural 
(mixed) convection ; and other systems as well. 

In a horizontal layer heated from below, the low 
Rayleigh number flow has been predicted using a finite 
element method [85F]. Another finite element study 
for low Rayleigh numbers indicates the influence of 
Prandtl number on the flow [16F]. The stability of 
a layer with linear and non-linear temperature 
distributions was determined using a technique 
developed for optimal control problems [7lF]. Non- 
linear three-dimensional instability has been analyzed 
for constant heat flux boundary conditions [35F]. In 
non-linear convection with a variable coefficient of 
thermal expansion square cells transport more heat 
than two-dimensional rolls, and rolls are unstable 
[98F]. A number of flows were studied for fluids with 
high Prandtl numbers [36F]. The onset of convec- 
tion in a viscoelastic fluid depends strongly on the 
particular constitutive relationship that characterizes 
the material [IOOF]. New oscillatory instabilities 
are found which indicate the presence of blobs of hot 
and cold fluid circulating in convection [20F]. Asymp- 
totic properties of a bifurcation sequence that can 
generate random flow modes were analyzed and 
indicate periodic solutions which become unstable 
[122F]. 

A numerical simulation model for turbulent flow 
was applied to thermal convection [121F]. Another 
model developed for high Rayleigh number flow pre- 
dicts horizontal motion of plumes [SOF]. A scalar 
model for turbulent energy transfer can be used to 
predict Nusselt number at high Rayleigh number 

[74F]. 
Laboratory experiments to simulate convection in 

the atmosphere indicate the dynamics of the region 
underneath a stable or linear stratified layer [70F]. 
Experimental results for high Rayleigh number 
unsteady turbulent convection yield correlations for 
the mean temperature field in terms of wall-layer 
scales and convection scales [2F]. A new measurement 
technique has been utilized [30F] to study the evol- 
ution of a time-dependent convective flow. 

Using a Monte Carlo simulation the dependency of 
the onset time for convection to start in a suddenly 
heated layer has been developed [62F]. Two-dimen- 
sional rolls and hexagonal cells are found to be stable 
in a fluid layer with internal energy sources [99F]. 
An electrochemical cell, in which a porous horizontal 
membrane separates the fluid into two layers, has been 
used to simulate heating from below [55F] ; at high 
Rayleigh number, the membrane reduces the Sher- 
wood number [54F]. 

A conservative lower bound for buoyancy driven 
convection in bounded geometries show incon- 
sistencies in some earlier published numerical results 
[87F]. Flow patterns in a rectangular container heated 

from below, have been studied over a range of Ray- 
leigh numbers and Prandtl numbers [68F]. An analysis 
uses a realistic side wall boundary condition to show 
differences in the flow patterns with the horizontal 
extent of a container [8lF]. A three-dimensional 
numerical solution was obtained using a k-e model 
for flow in a cube heated from below and cooled on 
one vertical wall [93F]. The influence of lateral walls 
on convection with a micropolar fluid [56F] is different 
from that found earlier with a Newtonian fluid. An 
experimental study on the random oscillations in a 

fluid-filled cubical cavity is related to periods of solar 
activity [18F]. Flow visualization and heat transfer 
measurements have been performed for various com- 
binations of heated and cooled vertical and horizontal 
surfaces in a cubical enclosure [66F]. 

Visualization of fluid motion in a circular cylinder 
heated from below shows both axisymmetric and 
three-dimensional motions at modest Rayleigh num- 
ber [40F]. Flow in a cylindrical cavity with high fre- 
quency vibration in a zero gravity field appears in the 
form of two vortices [ 103F]. The temperature and flow 
distributions have been calculated for a fluid contained 
in a hemisphere heated from below [5F]. Another 

study on heat transfer in a hemisphere simulates prob- 
lems following an accident in a gas cooled reactor 
[104F]. 

Measurements of velocity and temperature fluc- 
tuations in a horizontal layer with uniform volumetric 
energy sources compare well with a simple mixing- 
length analysis [6lF]. 

Coupling of electrodynamic and buoyancy forces 
has a large impact on heat transfer in an enclosure 
[88F]. The linear stability of a dielectric fluid under 
the simultaneous influence of a vertical a.c. field and 
a vertical temperature gradient was determined using 
a finite difference method [3F]. The influence of a 
vertical magnetic field on instability in a circular cyl- 
indrical container is such that the critical Rayleigh 
number increases as the intensity of the magnetic field 
increases [78F]. Another study on the effects of a 
magnetic field predicts the velocity and temperature 
fields in the resulting flow [ 17F]. 

The interaction between two fluids, one on top of 
the other, when heated from below has been con- 
sidered in several studies. A stability analysis for a 
two-layer system has been extended [96F] to different 
Rayleigh numbers. A perturbation method [89F] pre- 
dicts the onset of flow including the influence of slight 
curvature around the fluid-fluid interface. Cal- 
culations [75F] of the heat transfer across two layers 
yield the values of the Nusselt number as a function 
of the Rayleigh number and other parameters. A 
numerical analysis [63F] includes the effects of Maran- 
goni convection at the interface of two layers. An 
experimental correlation has been obtained for the 
heat transfer across two layers heated from below 
[108F]. 

Considerable attention has been directed toward 
convection with double diffusion where the density 
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differences which create and maintain a flow are 
caused by two different properties of the fluid, gen- 
erally temperature and composition. With non-uni- 
form temperature and composition, diffusion of heat 
and mass occur simultaneously. Usually the diffusion 
of mass is at a much lower rate than the thermal 
diffusion leading to many interesting and complex 
phenomena. Analysis and measurement of the onset 
of flow in a stably stratified fluid heated from below 
show good agreement [59F]. Two-scale methods are 
employed to predict the planform in the salt-finger 
regime of thermohaline convection [95F]. Different 
mathematical approaches have been compared [84F] 
for predicting potentially oscillatory flows in ther- 
mohaline convection. A correlation has been 
developed to predict the flow in a salt-stratified fluid 
heated from below [15F]. The motion in a binary 
mixture held in a vertical layer heated from the side 
has been analyzed, including effects of ther- 
modiffusion [107F]. Local heat and mass sources in 
double-diffusive convection influence the size of the 
flow cells [97F]. The successive bifurcations for con- 
vection in a double-diffusive system are extended to 
the development of chaos [67F]. A model predicts 
the transient response of a double-diffusive system, 
destabilized by radiation adsorption at its bottom 
boundary [14F]. Salinity stratification in a horizontal 
fluid layer has a destabilizing effect through coupling 
with an oscillating temperature field [120F]. 

Studies of convection in an inclined channel con- 
sider the influence of geometric parameters on the 
flow. The inclination angle has an important role in 
determining the flow direction in a slanted open rect- 
angular cavity [51F]. At small angles of inclination 
from the horizontal, the sidewalls of a cavity give rise 
to secondary flows in the form of stationary 
transverse rolls with horizontal axes parallel to the 
shorter side, as opposed to the longitudinal rolls pre- 
dicted for an infinite layer [80F]. A finite difference 
analysis for flow in an inclined layer with a partition 
shows the importance of the location of the partition 
on the flow and heat transfer characteristics [114F]. 
An experiment in an inclined layer with partitions 
shows the effect of partitions on the nature of the flow 
though they appear to have little influence on the heat 
transfer across the layer [lllF]. The tilt angle and 
aspect ratio of an inclined layer strongly affect the 
Rayleigh number for the transition threshold from 
steady to time varying flow [94F]. 

Convection in the space between one solid object 
and a surrounding enclosure have been studied for 
different geometries ; one is for a cylinder, often circu- 
lar, inside another cylinder; another is the annulus 
between two spheres ; and still others are for a range 
of different shaped objects in surrounding enclosures. 
The use of modeling procedures for convection in 
a horizontal annulus provides good agreement with 
earlier predictions and measurements [34F]. A special 
curvilinear coordinate system was developed to study 
the convection in annuli between concentric and 

eccentric horizontal cylinders [25F]. Numerical solu- 
tions for the flow in annuli between concentric and 
eccentric horizontal cylinders provide stream lines and 
isotherms, as well as, average Nusselt numbers for 
constant heat flux boundary conditions [43F]. An 
analysis shows that the Boussinesq approximation is 
useful even at large temperature ratios when pre- 
dicting overall heat transfer with laminar convection 
in the annulus between horizontal concentric cylinders 
[79F]. The use of baffles to decrease the convective 
heat transfer across horizontal eccentric annuli has 
been studied over a range of conditions to obtain the 
optimum baffle orientation [ 11 F]. 

Linear stability analysis has been applied to the 
flow in thin spherical annuli with axisymmetric dis- 
turbances ; different modes of flow are found for 
different Prandtl number fluids [39F]. Another analy- 
sis for convection within thin spherical annuli uses a 
perturbation method in powers of the relative gap 
width [118F]. Convective flow in the region between 
rotating eccentric spheres has been modeled [6F]. 

Computations and experiments on convection in 
a circular horizontal cylinder with uniform energy 
dissipation have been perfomed over a large range of 
Prandtl numbers and Rayleigh numbers [82F]. Con- 
finement of a heated horizontal cylinder by an adia- 
batic wall enhanced the heat transfer from the cylinder 
[58F]. A holographic interferometer was used [ 106F] 
to show the influence of plate inclination on heat 
transfer loss from a plate to a surrounding cylindrical 
enclosure [106F]. Measurements of the heat transfer 
from two heated isothermal horizontal cylinders to a 
surrounding enclosure provide correlations for the 
overall heat transfer [109F]. Unsteady natural con- 
vection from a vertical surface to a surrounding cavity 
was analyzed numerically [60F]. The Nusselt number 
for heat transfer between a cavity wall and internal 
fluid has been measured [123FJ A numerical study 
indicates the heat transfer between two concentric 
vertical cylinders of different heights including a case 
when two immiscible fluids are in the enclosure 
[86F]. 

Steady-state two-dimensional results were obtained 
from numerical calculations for heat transfer in a 
differentially heated enclosed vertical slot with a 
sufficiently large temperature difference to provide 
large variations in thermal properties [26F]. Another 
study considers variable properties for laminar con- 
vection in vertical channels with uniform heat flux 
boundary conditions [4F]. Natural circulation in a 
number of parallel channels with heat inputs has been 
studied to simulate heat transfer in a gas-cooled reac- 
tor following loss of coolant [I 12F]. A semi-empirical 
model of turbulence was employed to predict con- 
vective flow in a differentially-heated vertical layer 
[ 116F]. Numerical solutions provide heat transfer 
results for convection in a vertical channel with cor- 
rugated walls [38F]. Flow in a vertical wavy channel 
was studied using a perturbation technique [115F]. 
Two-dimensional convection in a rectangular cell with 
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horizontal plate fins was determined numerically 
over a range of aspect ratios, Prandtl numbers, and 
fin parameters [91F]. A combined experimental and 
numerical study describes the heat transfer in a chan- 
nel with a vent in the form of a slit [lOF]. 

A numerical solution for the quasi-steady natural 
convection heat transfer in a vertical channel the 
boundary temperature of which increases linearly 
with time has been described [76F]. A description of 
the properties of quasi-steady free convection in a 
vertical cylinder shows the influence of a number of 
dimensionless parameters [27F]. Experiments in a ver- 
tical trapezoidal enclosure were carried out using 
water as the working fluid [65F]. The influence of the 
thermal boundary condition on flow and heat transfer 
in a vertical cylindrical annulus has been analyzed 

[77F]. 
The interaction of vaporization from a thin film 

running down the walls of a vertical open tube and 
the natural convection and heat transfer within the 
tube have been analyzed [24F]. In a vertical differ- 
entially heated rectangular channel filled with water 
near 4°C there is an upward flow on both sides of the 
enclosure and a downward flow in the middle [72F]. 

Locally measured velocity profiles were compared 
with numerical predictions for convection in a differ- 
entially heated rectangular enclosure with a free liquid 
surface [ 11 OF]. Experimental results for laminar con- 
vection in a differentially heated water filled enclosure 
were compared with numerical predictions [ 10 1 F]. 
The stability of small perturbations superimposed on 
natural convection motions in a differentially heated 
fluid layer has been examined using two different 
numerical methods [22F]. The influence of three- 
dimensional boundary conditions on the temperature 
distribution and heat flow in a differentially heated 
enclosure have been measured [ 19F]. Experiments 
using a rectangular container with one vertical wall 
partially heated and partially cooled show two fluid 
cells, one above the other [41F]. A numerical algo- 
rithm has been developed to obtain three-dimensional 
solutions for convection in a differentially heated 
rectangular cavity [ 117F]. Velocity distributions were 
measured for convection in rectangular cavities with 
an applied horizontal temperature gradient [ 1 OSF]. 

Numerical solutions for three-dimensional buoy- 
ancy-driven flows in differentially-heated horizontal 
cylinders are relevant to crystal growth by vapor 
transport [21F]. Surface roughness to enhance heat 
transfer across cubical cavities has been studied exper- 
imentally [7F]. Laser-Doppler velocimetry was used 
to determine the velocity distribution in a shallow 
differentially-heated cavity [23F]. Experiments on 
convection in a rectangular enclosure with a partition 
extending from a vertically heated wall included fiow 
visualization using dye injection [64F]. An experiment 
on convection in an enclosure partially filled with glass 
beads provides information on heat transfer, as well 
as, flow visualization and temperature distribution 
[90F]. 

Thermosyphons have been of interest for many 
years for their practical application in modeling 
important flows and for their theoretical interest. 
Flow reversal has been predicted [73F] in a tilted 
toroidal thermosyphon. The heat transfer in an 
enclosed thermosyphon has been determined over a 
range of inclinations and pressures [44F]. Com- 
putation of the flow in a cavity with an internal object 
includes applications to two-dimensional thermo- 
syphons [ 1 F]. 

Capillary effects must be considered when there are 
free surfaces or fluid interfaces and a temperature 
difference causes a spatial variation in surface tension. 
These phenomena are often important in thin fluid 
layers, where the effective surface tension forces can 
be larger than those due to buoyancy producing what 
is called Marangoni convection. Marangoni insta- 
bility in a thin horizontal fluid layer was studied for 
a non-linear dependence of the surface tension on 
temperature [3 1 F]. The critical temperature gradient 
for the formation of hexagonal cells in surface tension 
driven flow in thin layers heated from below has been 

measured [69F]. An analysis of the deformation of the 
interface with thermocapillary convection in a rect- 
angular cavity heated from below has been examined 
[102F]. Prediction of free boundaries for thermo- 
capillary flow during the growth of a single crystal 
was determined using a finite element technique [33F]. 
The characteristics of the flow in a square cavity with 
simultaneous buoyancy and thermocapillary effects 
indicate that surface tension can either enhance or 
reduce the heat transfer rate depending upon the spec- 
ific input parameters [ 13F]. 

Correlation of Nusselt number as a function of 
Rayleigh number, the radii ratio and the eccentricity 
has been obtained for high Rayleigh number con- 
vection in a horizontal eccentric annulus containing a 
saturated porous medium [49F]. Numerical cal- 
culation of linear stability limits has been described 
for porous media through-flow [57F]. The influence 
of non-Darcy effects was demonstrated in a numerical 
study of convection in a vertical enclosure containing 
a porous medium [ 12F]. 

An area of continuing interest is the study of flows 
with combined natural and forced convection-often 
called mixed convection. In these, buoyancy and 
externally-imposed forces interact to provide, an often 
rather complex, flow. A numerical study indicates that 
the hydrodynamic entry length in a vertical parallel 
plate channel is greatly increased by buoyancy effects 
[8F]. A related study characterizes the fully developed 
flow in such a channel, including the conditions under 
which bi-directional Row occurs [9F]. Another study 
for a vertical channel provides solutions for tem- 
perature and velocity with symmetric heating of the 
sidewalls, as well as when one plate is heated and 
the other is adiabatic [46F]. With large temperature 
differences variable fluid properties can influence the 
heat transfer and flow reversal in a heated vertical 
annulus [47F]. A shift in the location of the position 
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of maximum temperature and a smaller Nusselt num- 
ber are observed for a partially blocked heated vertical 

channel as compared to a smooth channel [45FJ. 

A numerical solution for mixed convection in the 
entrance region of a horizontal rectangular channel 
shows that the Prandtl number influence is dependent 
on the Rayleigh number range [29F]. Calculations for 
mixed convection in a horizontal duct containing a 
power-law fluid indicate dual solutions possible with 
either two-cell or four-cell patterns [I 13F]. Experi- 
ments on mixed convection in the entrance region of 
horizontal and inclined rectangular channels provide 
a correlation of Nusselt number in terms of Rayleigh 
number, Reynolds number and inclination angle 
[83F]. A study on mixed convection in a horizontal 
tube surrounded by a liquid medium includes the 
influence of natural convection on the outer surface of 
the tube [32F]. Combined convection in a horizontal 
concentric annulus shows the effect of a rotating inner 
cylinder [42F]. Numerical procedures have been 

developed for studying convection in an inclined open 
cavity heated from below with a forced flow over it 
[52F, 53F]. 

Many studies on buoyancy-driven convection have 
a direct or indirect reference to applications ; a number 
of these have been cited in the paragraphs above. Here 

we will mention a few that were aimed very closely 
to specific needs. The convection characteristics of the 
gas in a vertical narrow annual gap with its bottom 
open to a high temperature fluid has been evaluated 
using a special computer code to predict the flow in 
an LMFBR [119F]. An analysis shows the importance 
of oscillations on natural convection in a ship tank 
[37F]. Convection through doorways in a building has 
been studied to predict the influence of door height 
[48F]. A numerical analysis shows the convective flow 
around a Trombe wall, used in a solar heating system 
[92F]. Natural convection in liquid gas explosives has 
been studied to indicate its influence on ignition [28F]. 

NATURAL CONVECTION-EXTERNAL FLOWS 

Natural convection from vertical plates continues 
to receive considerable attention in both experimental 
and theoretical studies. A non-similar transformation 
method was utilized to obtain solutions to flow adjac- 
ent to vertical, inclined or horizontal plates with either 
prescribed temperature or heat flux thermal boundary 
conditions [8FF]. An analysis is presented in which 
strong magnetic effects are presented [32FF]. Linear 
stability theory was used to predict the effects of tem- 
perature-dependent viscosity and buoyancy on the 
stability of the flow adjacent to an isothermal, vertical 
plate [33FF]. Experiments have been performed to 
investigate the flow near the maximum density of 
water [ 18FF, 29FF]. Matched asymptotic expansions 
and numerical methods are used to obtain solutions 
for a vertical heated plate with a room temperature 
plate attached at an arbitrary angle [25FF]. An ex- 
perimental mass transfer technique to measure the 

thickness of a natural convection boundary layer is 
presented [28FF]. Two-dimensional turbulent natural 

convection in a vertical slot is simulated using a spec- 
tral process [ 12FFJ 

Experimental and numerical results are presented 
for laminar flow on a vertical plate with discrete 
heated elements [19FF] which includes the effect of 
conduction in the plate. Pure forced convection and 
aiding mixed convection are simulated numerically 
for a vertical, conducting plate fin in a micropolar 
fluid [23FF]. The coupling of laminar forced con- 
vection and external natural convection separated by 
a conducting vertical wall is considered using elliptic 
numerical solutions and experiments using air [26FF]. 

Uniform blowing or suction was modeled numeri- 
cally on a vertical plate which had two sections of 
different temperature [20FF]. An analytical solution 
was obtained for the flow adjacent to a horizontal 
heated flat plate in which the suction velocity varies 
in a power law manner [2FF]. 

A comprehensive set of overall heat transfer cor- 
relations was presented for aiding and opposing mixed 
convection flow adjacent to a vertical flat plate [9FF]. 
An integral analysis provides results for both aiding 
and opposing mixed convection in which forced con- 
vection dominant and natural convection dominant 
regimes are identified [35FF]. Numerical solutions of 
transient mixed convection on a vertical plate exposed 
to a parallel horizontal flow were obtained which indi- 
cate that the forced flow dominates near the vertical 
leading edge and the natural convection dominates 
at large values of the horizontal coordinate [3lFF]. 
Aiding mixed convection on a vertical plate with dis- 
crete heat sources was simulated using numerical 
analysis with boundary layer approximations [ 17FF]. 

Vortex instability [4lFF] and wave instability 
[42FF] on inclined uniform heat flux plates were 
analyzed using linear stability theory for a fluid with 
a Prandtl number of 0.7 or 7. Experiments in air were 
performed to determine the influence of a parallel 
adiabatic plate located at various spacing above a 
heated horizontal plate [36FF] in which the maximum 
heat transfer occurred when the upper plate was 
removed. One-dimensional governing equations were 
solved for flow above a horizontal heated plate in 
water near its maximum density [1 1 FF]. Numerical 
solutions were obtained for buoyant flow over an 
adiabatic horizontal plate with a heated strip in the 
center [38FF]. Investigations of combined heat and 
mass transfer in a salt stratified layer above a heated 
strip indicated that the resulting flow was a com- 
bination of Rayleigh-Benard type cells and longi- 
tudinal roll cells [5FF]. 

Experiments in helium showed that natural con- 
vection from a horizontal cylinder was affected by the 
absolute temperature involved [ 1FFJ A wide range of 
Prandtl and Rayleigh numbers were covered in a series 
of experiments of natural convection from a hori- 
zontal wire in a viscoelastic fluid [27FF]. The aspect 
ratio above which the flow from a finite length hori- 
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zontal cylinder becomes two-dimensional was inves- 
tigated by comparing three-dimensional numerical 
solutions at the midplane with corresponding two- 
dimensional solutions [6FF]. Heat transfer from a 
vertical array of cylinders in free space or enclosed 
between vertical parallel walls was investigated exper- 
imentally in the boundary layer regime where the Nus- 
selt number was found to remain proportional to the 
Rayleigh number to the l/4 power [34FF]. Sub- 
stantially higher heat transfer rates were observed for 
natural convection from a horizontal finned cylinder 
situated in a vertical channel than when the cylinder 

was suspended in free space [37FF]. The effects of 
temperature-dependent properties were evaluated for 
transverse mixed convection about a horizontal cyl- 
inder using a finite difference numerical approach 
[3FF]. Finite element solutions were obtained of 
transverse mixed convection from a pair of horizontal 
cylinders located in the same horizontal plane [43FF]. 
Finite difference solutions were obtained for natural 
convection from a sphere with blowing or suction 
with either isothermal or uniform heat flux boundary 
conditions [24FF]. 

Measurements including mean velocity, local tem- 
perature, turbulence intensity and flow visualization 

were obtained in a buoyant jet constrained in a shal- 
low layer [4FF]. A self-similar model and cor- 
responding experiments were used to determine the 
nature of plume flows in viscous fluids that may simu- 
late convection in the earth’s mantle [15FF]. A plume 
adjacent to a vertical wall is studied and the results 
compared to a free plume [7FF]. An adiabatic wall 
plume adjacent to a vertical or inclined wall was 
modeled with a k-e-g turbulence model and the 
results compared to experimental data [22FF]. New 
correlations for the temperature distribution of a hori- 
zontal adiabatic wall situated above a plume rising 
from a point heat source were presented [IOFF]. Wind 
tunnel experiments were performed in which argon 
gas simulated the flow of a liquefied natural gas plume 
flowing past a circular storage tank [21FF]. 

Two-dimensional finite difference solutions were 
obtained for natural convection about a horizontal 
rectangular body resting on an insulated base [39FF]. 
Transverse curvature effects on axisymmetric bound- 
ary layer flow of water at 4°C past a vertical cylinder 
were investigated [I 3FF]. Two theoretical studies have 
been made on the flow of a thermally stratified fluid 
through a heated, vertical open-ended cylinder [ 16FF, 
30FF]. The flow in an infinite vertical slot is less stable 
when the viscosity is an exponential function of tem- 
perature than when it is constant provided Pr > 100 
[40FF]. The optical heartbeat phenomenon is dis- 
cussed [14FF] in which a laser beam propagating 
below a liquid free surface oscillates in intensity due 
to convective Benard and Marangoni instabilities. 

CONVECTION FROM ROTATING SURFACES 

An analysis describes the effects of Coriolis force 
and non-uniform temperature gradient on the Ray- 

leigh-Benard convection in a horizontal rotating 
fluid [13G]. The Galerkin method was found easy to 
carry out and to give good agreement with numerical 
computations. 

Steady and transient heat transfer, supported by 
flow visualization, was measured for natural con- 
vection in rapidly spinning containers simulating the 
conditions in superconducting generators with helium 
cooling [15G]. A correlation describing the Nusselt 
number for a wide range of Rayleigh and Prandtl 
numbers correlated the results. The convection struc- 
ture, studied for Rayleigh numbers between lo6 and 

10” and Taylor numbers from lo6 to lOI* revealed 
various flow configurations in the shape of rings and 
grids. This grid pattern still formed around the vertical 
rotation axis when the vessel was inclined [2G]. 
Numerical experiments [8G] of steady axisymmetric 
flow in a heated rotating shell were performed for a 
non-uniform gravitational field [8G] to simulate an 
atmospheric circulation experiment planned for the 
Space Shuttle. A dielectric force is considered to simu- 
late gravity. The flow and temperature fields in the 
boundary layer of heated and rotating spheres, sphe- 
roids and paraboloids were obtained [3G] for fluids 
with various Prandtl numbers. 

Six flow regimes were obtained by a boundary layer 
analysis for axisymmetric flow in an internally heated 
fluid through a rotating channel with rectangular 
cross-section [12G] and the results were compared 
with experiments. The flow field was measured with a 
laser-Doppler anemometer in a rotating cylindrical 
cavity with radial inflow of the fluid [4G]. Heat trans- 
fer was also measured and good agreement with the 
Ekman layer theory was obtained. A similarity analy- 
sis of the transient temperature distribution in a par- 
tially filled rotating horizontal cylinder shows [lG] 
that the temperature field is a function of the Fourier 
number and the bubble eccentricity. A numerical cal- 
culation studied convection in the annulus between 
asymmetric cylinders [5G]. The inner cylinder was 
rotating and heated. The radius ratio was 2.6 and the 
eccentricity varied between 0 and 2/3. The Rayleigh 
number extended to 106, the rotating Reynolds num- 
ber varied between 0 and 1120, and the Prandtl num- 
ber was 0.7. Thermocapillary and centrifugal-buoy- 
ancy-driven motion was analyzed in a rapidly rotating 
liquid cylinder [14G] as it occurs in liquid crystal 
formatting. The thermocapillary effect was found to 
be confined to a thin layer adjacent to the surface for 
small Ekman number. The buoyancy effect was small 
but influenced the temperature field in the interior of 
the cylinder. 

Heat transfer from rotating annular fins was studied 
experimentally in several papers [7G, 9G, 16G]. 

Local heat transfer in a round jet impinging on 
a rotating disk was measured [l lG] for a range of 
rotational and jet Reynolds numbers. A finite differ- 
ence calculation of laminar mixed and free convection 
over a rotating sphere with blowing and suction [6G] 
was found to be in good agreement with previous 



Heat transfer-a review of 1986 literature 2465 

calculations. Experiments with a heated and rotating 
circular cylinder in crossflow, at Reynolds numbers 
around 4 x lo4 and rotational to approach velocity 
ratios smaller than 2, established the fact that the 
location of the separation changes strongly with the 
cylinder wall temperature [ 1 OG]. 

COMBINED HEAT AND MASS TRANSFER 

This section covers a number of processes which 
play important roles in many heat transfer appli- 
cations and are often not fully understood in terms of 
fundamental fluid mechanics and turbulent transport. 
These include heat transfer from or to impinging jets, 
film cooling as used to protect solid surfaces over 

which high temperature gas flows occur, and processes 
similar to film cooling where mass injection from the 
surfaces diminishes the heat transport to the solid 
surface. A few papers related to drying and general 
combined heat and mass transfer systems are also 
reviewed. 

Numerical analysis of the flow and heat transfer 
with a circular laminar jet impinging on the bottom 
of a cavity shows the significant influence of the spent 
fluid flowing from the cavity counter to the impinging 
jet [ 1 H]. An impinging laminar slot jet can be used to 
smooth out the temperature distribution of a high 
temperature slab by transporting heat from one part 
of the slab to another [9H]. A study using a liquid jet 
impinging on the surface of a rotating disk, provides 
a correlation for the average Nusselt number as a 
function of three independent parameters [4H]. 
Measurements of the heat and mass transfer to an air 
jet impinging on a water surface indicate that the 
dimensionless transport coefficients are lower than 
those for impingement on a solid surface [ 19H]. 

With film cooling a fluid, usually a gas, is introduced 
at discrete locations on a surface over which a hot 
gas stream is flowing. The injected fluid (coolant) 
decreases the temperature in the boundary layer and 
thus the heat transfer to the solid surface. Numerical 
analysis procedures have been used to calculate the 
influence of film cooling using a row of injection holes 
[5H]; the results generally agree with available 
measurements. With injection of steam through one 
or two rows of inclined holes, a high film cooling 
effectiveness is found, apparently due to the relatively 
high specific heat of water vapor [8H]. With full cover- 
age film cooling (in which there are a large number of 
injection holes distributed on the surface) there is a 
considerably higher heat (mass) transfer on a concave 
wall than on a convex surface [ 15H]. 

Several studies examine film cooling as it applies 
in gas turbine combustors. Measurement of the heat 
transfer on the approaching flow for film cooling 
injection through a small hole into a gas turbine com- 
bustion chamber shows the importance of the heat 
transfer on the approaching side of the flow [3H]. A 
simple model has been developed [20H] to predict the 
influence of slot film cooling as required to protect 

gas turbine combustors. In a companion study [21 H] 
Row visualization and measurement show the import- 
ance of the flow within the slot in obtaining high film 
cooling effectiveness. 

Several studies examine the influence of flow 
through a porous wall on the heat transfer to a fluid 
flowing over it. The influence of acceleration and 
mainstream turbulence on the heat transfer in a short 
porous tube with injection has been analyzed [l lH]. 
The influence of variable physical properties on heat 
transfer in a tube with porous walls is much greater 
in the case of injection through the walls, than in the 
case of a simple mainflow [6H]. Similarity solutions 
have been obtained to predict the heat transfer to 
flow passing over a continuously moving porous plate 
[18H]. Combined sublimation and heat transfer to a 
moving permeable wall have been analyzed [7H]. 
Finite difference methods have been used over a range 
of Reynolds numbers to predict heat transfer for 
hypersonic viscous flow on a rotating axisymmetric 
porous body with fluid transpiring through the walls 
[13H]. Heat transfer characteristics for forced con- 
vection flow of a micropolar fluid over a porous sphere 
through which fluid transpires has been studied [ 17H]. 

An analytical model has been used to predict the 
high-intensity drying of paper adjacent to a hot sur- 
face [2H]. Another analysis predicts the mass transfer 
to jets used in the drying of paper [ 14H]. 

Two-phase combined heat and mass transfer has 
been studied for counter flowing films of liquid and 
gas [lOH]. Heat and mass transfer to falling laminar 
films are analyzed to predict the absorption of water 
vapor in a lithium bromide solution [16H]. Computer 
experiments on the combined heat and mass transfer 
in laminar flow of a tubular polymerizer shows a 
strong influence on non-linear phenomena [12H]. 

CHANGE OF PHASE-BOILING 

Nucleate boding 
The motion of liquid around a vapor bubble in 

saturated nucleate pool boiling was observed to agree 
with cited predictions and the consequent stirring 
effects on heat transfer agreed well with data [85Jl. 
Bubble frequency increased but bubble departure size 
decreased as pressure was increased in the range of 2s 
129 kPa for pool boiling of liquid potassium [10351. 
Numerical predictions and experimental observation 
addressed the behavior of a moving vapor bubble 
subjected to a step change in pressure [ 11 lJ]. The 
numerical analysis was able to describe the frag- 
mentation that occurs under some conditions as the 

bubble implodes. Measurements were made of the 
superheat at the onset of nucleate boiling in a narrow 
rectangular channel simulating a subchannel of a fuel 
element [1 1 SJ]. Theory and experiment were shown 
to agree that small gas bubbles may persist within a 
liquid for extended periods of time in a stable ther- 
modynamic state [ 13 1 J]. A mathematical model of the 
influence of an electric field upon the departure size 
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of nucleate boiling bubbles agreed with the exper- 
imentally observed trend of reduced bubble sizes with 
stronger fields and a greater liquid dielectric constant 
[17J]. Increasing the a.c. electric field intensity in 
two dielectric liquids led to increasing nucleation site 
density and smaller bubble departure diameter, while 
the electric breakdown voltage of these liquids was 
found to decrease when bubbles were produced at 

the heating surface [3OJ]. Liquid side mass transfer 
resistances were shown to be sufficient to explain 
reductions in heat transfer and selectivity (separation 
effect) of boiling binary mixtures [37J]. The aug- 
mentation of boiling heat transfer by capillary struc- 
tures on the heating surface was argued to be due to 
the reduction of the required superheat for bubbles 
in equilibrium when they are in cavities [57J]. The 
characteristics of saturated and subcooled nucleate 
boiling at and near impingement of submerged jets 
were explored with refrigerant 113 [67J]. As heat flux 
was increased, boiling curves produced with different 
jet velocities tended to merge into a fully developed 
boiling asymptote which was nearly matched by the 
extrapolation of pool boiling curves. High-speed 
cinema studies of bubble departure diameter, growth 
rate and site density were described in the cylinder- 
liner cooling space of a diesel engine [107J]. 

Pool boiling 

Measurements were made of macrolayer frequency 
and formation thickness with various large heat fluxes 
in pool boiling which compared well with analytically 
predicted values [l lJ]. The findings suggested that a 
large portion of the wall heat flux is transferred by 
conduction through the macrolayer. Pool boiling 
from planar surfaces in refrigerant 11 was shown to 
improve dramatically with surface enhancements 
which, unfortunately, also produced large tem- 
perature overshoot at boiling incipience [52J]. 
Coefficients of heat transfer generally increased 
slightly with the angle of inclination relative to the 
horizontal, up to roughly 165” for moderately low 
heat fluxes, while no noticeable changes occurred with 
inclination at higher heat fluxes. Considerable 
enhancement of heat transfer was also found with 
roughened surfaces in the transition regime [125J]. 

A model proposed to correlate heat fluxes to liquids 
boiling in porous (wick) materials was favorably com- 
pared with experimental findings for water, acetone, 
ethanol and refrigerants 11 and 13, and exhibited pro- 
portionality between heat flux and the square of the 
temperature difference [88J]. The onset of boiling was 
examined for wick-covered heating surfaces in pool 
boiling of water at pressures from 0.02 to 0.5 MPa 
[123J]. Flooded wicks began boiling at lower super- 
heats than plain surfaces, greater wick thicknesses 
requiring smaller superheats. Pool boiling experi- 
ments with water, acetone, and a water-acetone mix- 
ture were conducted with varying depths of loose 0.2 
mm steel particles on a horizontal heating surface 
[98J]. Particle layer enhancements of heat transfer 

coefficients were greatest for the pure liquids when 
the layer was 610 mm thick, while enhancements 
of mixture boiling, inhibited by mass transfer 
limitations, peaked at a depth of only 1.5 mm. Experi- 
ments with plasma-deposited particle coatings on 
horizontal cylinders were conducted to explore the 
effects of particle diameter [97Jl. For all fluids tested 
and for all particle sizes, the enhancement of heat 

transfer declined with increasing heat flux. Heat trans- 
fer coefficient improvements relative to uncoated sur- 
faces for water-alcohol and water-acetone mixtures 

were small or negative, especially at an intermediate 
particle size around 0.05 mm. Improvements tended 
to be larger with alcohol, acetone and their mixtures, 
monotonically increasing with decreasing particle size 
to the smallest studied, 0.035 mm. 

Pulsating pressure and temperature observed in an 
earlier experiment with stepwise transient heating of 
a narrow channel open at one end were analyzed, 
matching the pulsation period well by modeling the 
bubble growth and collapse process in the fluctuating 
pressure field [94J]. Experiments were performed on 
boiling in a narrow vertical rectangular channel 
heated from one side with artificially injected bubbles 
[72J]. Heat transfer coefficients were found to vary 
with the inverse square root of either the period of 
bubble injection or, at higher heat fluxes, the period 
of bubble cluster motion. A model was developed to 
predict the extent of a dry patch produced in a narrow 
eccentric annulus and the corresponding temperature 
distribution, applicable to the crevices between tubes 
and tube support plates in PWR steam generators 
[51J]. Atmospheric and subatmospheric pressure pot- 
assium pool boiling experiments were described along 
with a model for the minimum heat flux required to 
produce an alternating dry patch boiling regime [69J]. 
The effects of oil in a mixture with refrigerants upon 
boiling heat transfer on a fine horizontal wire were 
explored experimentally [74J]. 

Flow boiling 

Bounding values of liquid and vapor superficial 
velocities separating flow regimes in horizontal boiler 
tubes according to their ability to preclude the aniso- 
thermal conditions which could lead to early tube 
failure were analyzed and compared with data from 
several sources [8Jl. A new correlation was proposed 
for forced convection boiling, based on data of water, 
refrigerants and ethylene glycol, for saturated and 
subcooled boiling in tubes and annuli [385]. A sum- 
mary of current knowledge of heat transfer in satu- 
rated flow boiling of cryogenic fluids in vertical and 
horizontal tubes was presented [114J]. Influences of 
quality, mass velocity and heat flux on Bow boiling 
heat transfer coefficients for argon in a horizontal 
tube were reported [76J]. Analytical and experimental 
studies were reported for forced flow of He II along 
with the establishment of a condition for two-phase 
flow to occur in a transfer line [22J]. Flow boiling and 
CHF data were generated for mixtures of refrigerants 
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11 and 113 and it was determined that a linear mixing 
rule for composition was adequate for estimating criti- 
cal quality but not heat transfer coefficients [8OJ]. 

Based on the similarity with gas-liquid adsorption 
processes, a model was proposed for forced convective 
annular evaporation (with nucleate boiling sup- 
pressed) [21Jl. A Reynolds analogy approach to sub- 
cooled convective boiling was presented, permitting 
estimation of bubble size and hydraulic drag [7J]. 

Experiments with upward flowing refrigerant 113 
in vertical, uniformly heated test sections with and 
without twisted tape inserts showed increasing aug- 
mentation of heat transfer coefficients with decreasing 
tape-twist ratio (twist pitch divided by twice the tube 
diameter) and increasing quality, pressure and heat 
flux [SOJ]. Swirled forced convection boiling heat 
transfer coefficients were also measured for refrigerant 
12 in horizontal tubes with twisted tape inserts [251. 
Heat transfer coefficients with the inserts were found 
generally to exceed those for plain tubes ; enhance- 
ment was greatest for small twist ratio and varied 
considerably with quality, heat flux and mass flow 
rate. 

Cold experiments with air-water mixtures and 
heated experiments with steam-water mixtures gave 
evidence of a region of unstable stratified flow with 
moderate and low mass fluxes upward in a circular 
tube helically coiled around a vertical axis [27J]. Flow 
and heat transfer characteristics of an air-water two- 
phase flow were measured in helical coils with hori- 
zontal axes [ 12851. Heat transfer coefficients and criti- 
cal heat fluxes were found to vary considerably around 
the perimeter of channels carrying boiling cryogens 
under forced convection while simultaneously rotat- 
ing around a parallel axis [ 101 J]. 

Subcooled flow boiling of heptane in an annulus 
and past a coiled wire was investigated experimen- 
tally [77J] and compared with correlations from the 
literature [78J]. Crossflow boiling heat transfer on 
horizontal tube bundles was systematically studied by 
contrasting experimental results of a single heated 
tube alone with those for a single heated tube in an 
unheated tube bundle and those for a heated tube 
within a heated tube bundle [42J]. Heat transfer 
characteristics of boiling He I in aluminum plate heat 
exchangers with and without fins were reported [48Jl. 
The finned surfaces displayed an advantage in film 
boiling while finned and unfinned surfaces had the 
same characteristics in nucleate boiling. 

Inverted annular flow was studied with the help of 
adiabatic gas-water experiments and a transparent 
heated test section [47J]. Emphasis was placed on flow 
regime transition observation and modeling, pro- 
ducing preliminary transition criteria and droplet 
diameter correlations. Effects of liquid droplets on 
post-dryout heat transfer were found to be similar to 
those of solid particles in flowing gas-solid mixtures 
[127J], and a simplified wall temperature calculation 
method for post-dryout conditions was shown to 
reasonably approximate a lengthier numerical pro- 

cess presented earlier. Dispersed flow heat transfer in 
post-dryout conditions was reviewed in the light of 
recently obtained data which indicated clearly that 
nonequilibrium between droplets and vapor is 
characteristic of post-dryout flows [ 164. Several 
other studies of post-dryout heat transfer were 
reported [24J, 395, 665, 119J]. 

Transition andfilm boiling 
Transition boiling analysis, discussed in two ways : 

temporal fluctuations at given locations and spatial 
variations at any given time, was modeled in the latter 
way with the goal of obtaining a universal boiling 
curve through recognition of both hydrodynamic 
effects and the surface effects of roughness and wett- 
ability [4lJ]. The impedance across a thin dielectric 
film deposited on a surface was used as an indicator 
of liquid-solid contact in film, transition, and nucleate 
boiling [2051. Extremely small electric voidage probes 

were used to explore the extent, duration and fre- 
quency of liquid-solid contact at a surface with sub- 
cooled pool transition boiling of water [44J]. Theory 
and experiment were applied in order to understand 
the mechanism of transient boiling with liquid and 
vapor contact durations chosen as the quantitative 
characteristics [58J]. 

Experimental studies of the effects of transients and 
of surface thermal conductivity on the minimum heat 
flux condition on a small, circular, horizontal heating 
surface showed that, below a minimum thickness, 
thinner samples and quicker transients resulted in 
lower fluxes but no change in the superheat at the 
minimum heat flux point [9OJl. Higher superheats and 
fluxes at the minimum point were induced by thicker 
layers of insulating PTFE on the surface. Transient 
film boiling and minimum heat flux were measured on 

a sphere in water at atmospheric pressure for various 
subcoolings and immersion depths [91Jl, suggesting a 
modification to the equation proposed by Hamill and 
Baumeister. Minimum heat fluxes for saturated pool 
boiling of refrigerant 113 on a horizontal surface were 
measured at pressures above and below atmospheric 
[l lOJ], with results suggesting inclusion of the liquid- 
vapor density ratio in the correlation of Berenson. 

An integral treatment of the two-phase boundary 
layer of film boiling was applied to subcooled forced 
convection on a flat plate [835], forced convection on 
plane and axisymmetric bodies [84J], laminar pool 
boiling on curved surfaces [82J], and combined free 
and forced convection film boiling [86J, 8751. Steady 
film boiling experiments were performed with a sphere 
immersed in a flowing stream of subcooled refrigerant 
11 [965], displaying two maxima and two minima in 
the boiling curve, the second pair of extrema being 
explained through a changed wake pattern. A model 
was presented for coolant vapor film growth on a hot 
molten sphere in a subcooled liquid coolant [56J]. 
The model qualitatively predicted the characteristic 
oscillation amplitude and time scale of experimental 
observations recorded elsewhere. Annular film flow 
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boiling experiments were conducted with three fluids 
in a partially heated vertical channel with offset strip 
fins, transparent on one side to permit visual study 
of flow regimes [13J]. Measured coefficients of heat 
transfer lent credence to a postulated model. Tran- 
sition and film boiling in a bottom-heated liquid-satu- 
rated porous body were studied experimentally to 
determine effects of the packing bead diameter for 
water and two refrigerants [32J]. With small particles, 
no maximum or minimum heat flux was observed; 
heat flux instead increased monotonically with heater 
temperature. The ‘equilibrium load’, a heat flux for 
simultaneous nucleate and film boiling on a surface, 
was analyzed and related to the speed of propagation 
of a wave by which nucleate boiling gives way to film 
boiling or vice versa [121 J]. 

Critical heatjux 
A ‘lookup table’ has been compiled for estimating 

critical heat flux, CHF, based upon a data base of 
more than 15 000 data points [36Jl. The table can be 
employed either as a predictive tool or as a means of 
checking predictions of present or new correlations. 
An earlier theoretically based DNB prediction 
method was extended, by allowing for non-uniform 
void profiles, to void fractions up to 0.8 in both round 
tubes and rod bundles [132J]. A theoretically based 
critical heat flux prediction for low void fraction 
was presented which, unlike another recent predictive 

model, appears to be applicable to both high and low 
vapor densities (high and low system pressures) [13OJ]. 
The critical heat flux of subcooled boiling of water in 
a narrow tube was found to increase with shorter tube 
length and smaller inside diameter [45J]. A new dryout 
description, the onset of a dry sheath condition, appli- 
cable at high mass fluxes where sharp temperature 
excursions are not likely to be observed, was proposed 
as a more appropriate limit for PWR operation [35J]. 

Limiting heat loads were explored for water, 
ammonia, and three fluorocarbon refrigerants inside 
a vertical heated tube bundle of a natural circulation 
system [655]. Flow visualizations of regimes of natural 
convection near critical heat flux in horizontal annular 
channels were described [59Jl. Dryout at low heat 
flux, induced by flow excursions in natural convection 
boiling was studied, leading to an approximate, flow 
regime dependent, limit of safe operating heat flux 
[55J]. 

A method was proposed for determining, for any 
fluid, the saturated liquid pressure which will permit 
the largest peak nucleate boiling heat flux [113J]. It 
was further stated that the same pressure condition 
should permit the largest minimum heat flux for film 
boiling. In an experimental study of two-phase gas- 
water flow through vertical U and inverted U bends, 
the inverted U was shown to accommodate higher gas 
fluxes and lower water fluxes without large tem- 
perature rises, consistent with flow visualizations per- 
formed in transparent, adiabatic bends [118J]. Three 
different characteristic regimes of critical heat flux 

were observed for an impinging jet on a heated disk 
[73J], and correlations for each were developed. Criti- 
cal heat flux on a horizontal cylinder with upward 
subcooled and low quality two-phase crossflow was 
measured for refrigerant 113 at 2 and 4 atm [49J]. 
Critical heat flux decreased linearly as quality 
increased up to roughly lo%, beyond which a flow 
regime change rendered critical heat fluxes invariant 
with quality. Uncovered bundle high pressure boil-off 
experiments yielded two modes of results ; low power 
boil-off, for which existing steam cooling heat transfer 
correlations gave good predictions, and high power 
boil-off, for which modification had to be made to 
correct correlations for larger droplet cooling effects 
[62J]. 

The pressure dependence of dryout heat flux in an 
inductively (volumetrically) heated bed of particles 
was explored, displaying a monotonic increase of dry- 
out heat flux with pressure and with particle size [7OJ]. 
Free beds of 1 mm particles allowed greater heat fluxes 
than constrained beds, especially at near-atmospheric 
pressure. Experiments and a semi-theoretical model 
dealt with the effects upon dryout at a horizontal 
surface in pool boiling of particles light enough to be 
suspended by turbulence [14J]. Under some heat flux 
and particle load conditions, a decrease in heat flux 
induced dryout. The dryout of downward facing sur- 
faces in debris beds was also explored [93J]. 

Reactor applications 
Thermo-hydraulic instability as a consequence of 

vapor blockage was studied with refrigerant 113 in a 
vertical N-shaped boiling channel with an adiabatic 
bypass [4J]. Two models, one of them linear, were 
proposed for density wave instability in parallel boil- 
ing channels [SJ]. Experimental observations of such 
instabilities were compared [6J] for two heating 
methods ; electrically and with hot water to stimulate 
conditions of LMFBR steam generators. Density 
wave instability thresholds were explored in a liquid 
sodium heated system [28J] and results contrasted 
with correlations. Instability thresholds predicted 
using a linear analysis based on a two-fluid model 
compared favorably with some existing data from 
water-steam and refrigerant 113 experiments [23J]. 
New approaches were presented for the analysis of 
instability in boiling systems [64J]. Elaboration upon 
an earlier method of stability analysis led to a simple 
method for predicting oscillation frequency and stab- 
ility threshold for density wave oscillations [81J]. 
Coolant and fuel dynamics of a BWR were coupled 
in a closed form model for stability analysis of density 
wave oscillations [lOOJ]. 

Measurements of disturbance waves in heated 
steam-water annular two-phase flow and in com- 
parable adiabatic air-water flows demonstrated less 
pronounced and longer-tailed waves in the boiling 
flow as well as greater scatter of propagation velocities 
[79J]. The mean period of dryout point fluctuations 
was shown to be related to the characteristics of the 
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dryout point location and the relationship was dem- 
onstrated with data for refrigerant 12 in a horizontal 

serpentine evaporator [ lOJ]. A frequency response 
model of boiling flow systems was illustrated, employ- 
ing a more convenient computation technique which 
compared well with experimental findings [106Jl. 

In an experimental study of upward steam flow 
effects upon PWR reflood quenching [ 1 Jl it was deter- 
mined that top-down quench velocity was delayed 
more by steam upflow when rod surface temperature 
was low and water flow rate was small. A parametric 
numerical study performed with a two-dimensional 
heat conduction code [12J] examined the effects of 
cladding properties and initial cladding and coolant 
conditions upon rewetting velocities with given chan- 
nel thermo-hydraulics. Rewetting experiments with 
refrigerant 12 at low flow rates were reported [34J]. 
Experiments were conducted to evaluate the effects of 
oscillatory coolant injection on quench front motion 
and liquid carryover in reflooding [92J]. Oscillation 

appeared to induce initially larger but eventually 
smaller quench velocities ; overall the quench location 
was related to accumulated liquid inventory in the 
same way in both steady and oscillatory injections. It 
was shown [ 12951 that the heat flux to vertical surfaces 
during bottom reflooding transients can be approxi- 

mated by the wetted area heat fluxes of steady tran- 
sition boiling. Trial application of the two-fluid model 
simulation code, SABENA, to a low heat flux sodium 
boiling experiment was described [89J]. A simple 
model was described for the transient heating and 
steady boiling of a solution of fissile material, appli- 

cable to accident analysis of nuclear fuel reprocessing 
systems [ 108J]. 

Droplet evaporation 
A numerical analysis which agreed well with exper- 

imental findings suggested that increases in aspect 
ratio of spheroids increased drag coefficients at low 
Reynolds numbers but reduced drag coefficients at 
Reynolds numbers greater than 50, while average heat 
and mass fluxes showed a monotonic decline with 
increasing aspect ratio [19J]. Numerical estimates 
were made of conjugate unsteady heat transfer from 
spherical droplets and particles at low Reynolds num- 
ber with equal thermal diffusivities of the two phases 
[95J]. A numerically efficient formulation of transient 
multicomponent droplet vaporization suitable for use 
in combustion spray analysis was developed and con- 
firmed [124J]. Theoretical variations of drop size with 
time during evaporation in a vapor-gas mixture were 
presented for drops of constant temperature and 
drops warmed by the surrounding gas [53J]. In the 
latter case, the droplet may initially grow in size due 
to condensation. Theoretical treatments of instan- 
taneous heat transfer coefficients for condensing two- 
phase bubbles and total evaporating time of a two- 
phase drop compared well with experimental data 
[ 10451. Data were obtained for instantaneous growth 
rate, rise velocity, and heat transfer coefficient of 

butane droplets evaporating in water [71J]. Drops 
falling through a gas into a liquid were observed to 
entrain gas bubbles [25Jl, having implications for a 
mechanism of secondary nucleation. Flow and heat 
transfer characteristics were explored as refrigerant 
113 boiled upon injection into flowing hot water [3 14. 
Photographic studies of high temperature liquid drops 
falling into volatile liquids displayed very uneven 
vapor bubble surfaces and four types of pressure-time 
behaviors [43J]. 

Liquid drop suspension on an air cushion was 
examined as an analog of Leidenfrost boiling, leading 
to a mathematical model which very closely predicted 
the shape of air-suspended drops and which suggested 

that the Leidenfrost temperature is a decreasing func- 
tion of drop volume [33J]. Experiments were reported 
with subatmospheric pressure droplet evaporation on 
a surface at and above the Leidenfrost temperature 
[12OJ]. Analysis was presented of the main trends in 
heat and mass transfer during suspension of liquid 
spheroids above heated or gas permeated surfaces 
[63J]. Experiments were performed to compare the 
bubble initiation characteristics of superheated water 
droplets in contact with four different solid materials 
[I 16J]. The frequency of production of critical nuclei 
was shown to increase with a decrease in the wett- 

ability of the surface. Droplet velocity was determined 
to directly influence non-steady heat transfer in drop 
cooling of a surface, being proportional to the evap- 
orated mass fraction of the drop [68J]. Cool liquid 
drops striking the surface of molten tin displayed a 
splash phenomenon which did not occur upon striking 

molten salts [ 11751. 

Flashing and other evaporative processes 
Experiments were described and correlations pre- 

sented for evaporative air and water flow over a hori- 
zontal tube [105J]. Analysis and experiment suggested 
that heat transfer coefficients were not substantially 
enhanced by evaporation from a liquid surface unless 
other sources of heat input to the liquid were over- 
looked [61J]. Condensation of some of the diffusing 
vapor was found to stimulate the evaporation of a 
heated, but not boiling, liquid film into a saturated 
stream [3J]. Rates of evaporation of water and of 
toluene from a partially filled cylindrical cavity in the 
lower wall of a rectangular air flow channel were 
found to exhibit a maximum when the liquid level was 
roughly one half cavity diameter below the plane of 
the duct wall [102J]. Evaporation in film flows was 
examined [15J, 185,99J]. Conjugate evaporation from 
a falling film, diffusion through a non-condensable 
gas and film condensation on a cooler surface was 
analyzed using the local similar technique [26J]. 

Models of dynamic and thermal behavior of hot gas 
bubbles discharged into water were discussed [7551. 
Theory and experiment were applied to the growth of 
bubbles in rapidly decompressed bodies of uniform 
temperature water [122J]. Approximate methods of 
determining heat flux to a growing vapor bubble from 
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a surrounding superheated liquid were presented and diameters showed that condensate flow waves, which 
compared with a numerical computation method substantially enhance heat transfer coefficients rela- 

[6OJl. Heterogeneous nucleation at surfaces under tive to the Nusselt theory, occur on cylinders of all 
decompression was modelled, based on an analysis of diameters [16JJ]. The effect of spacing of 1 mm thick, 
subcooled nucleate boiling [109J]. Experiments dem- 1 mm high fins upon film condensation on horizontal 
onstrated that a surface instability near the limit of 19 mm diameter tubes was measured for pure steam 
superheat, responsible for large heat and mass fluxes condensing at atmospheric and subatmospheric pres- 
of vapor explosions, was suppressed by increased sures [5OJJ]. Maximum enhancement of heat transfer 
ambient pressure [29J]. occurred with a spacing of 1.5 mm between fins. 

The binary mutual diffusion coefficient was shown 
theoretically to vanish in a critical state of a binary 
mixture [126J]. Kinetic theory analysis was applied 
to unsteady evaporation [112J]. The ‘paradox’ that 
slow evaporation/condensation between two parallel 
liquid surfaces at unequal temperatures can result in 
a vapor temperature profile opposed to the applied 
temperature difference was shown not to violate prin- 
ciples of non-equilibrium thermodynamics [4OJ]. A 
review of the effects of monolayers on the evaporation 
of liquids showed that attempts to predict associated 
resistance values have not been generally successful 
[9J]. Rates of evaporation and composition of vapors 
emanating from stirred subatmospheric evaporating 
binary mixtures were measured and modeled incor- 
porating convection and diffusion in the near-surface 

liquid [46J]. A previously proposed method of cal- 
culating mass transfer in multicomponent two-phase 
systems has been extended to include convective 
diffusion and heat transfer [54J]. 

An analytical treatment of film condensation of 
saturated and superheated binary vapor mixtures on 
a vertical plate showed that buoyant forces have 

appreciable influence and that vapor temperatures are 
strongly affected by the diffusion flux toward the 
liquid vapor interface [27JJ]. Experiments showed 
that drainage discs considerably enhanced con- 
densation heat transfer with steam condensing at 1 
atm on a vertical fluted tube [18JJ]. Optimal spacing 
of these discs was 50-100 mm for heat fluxes of 6s 
100 kW m-‘. Analysis and experiments were con- 
ducted with condensation on downward facing hori- 
zontal surfaces with and without porous drainage 

strips [23JJ]. Finned surfaces had heat transfer 
coefficients improved by factors up to 9 and 12, respec- 
tively, for refrigerant 113 and methanol with the 
drainage strips. In a brief review of laminar film con- 
densation, it was argued that this basic phenomenon 
represents an important benchmark for numerical 
heat transfer and fluid mechanics modeling [ 11 JJ]. 

CHANGE OF PHASE-CONDENSATION 

An analytical expression was presented for laminar 
liquid film flow in the thermal entry region down inner 
or outer walls of a vertical cylindrical tube [4OJJl. 
Simple relations were developed for heat transfer from 
a horizontal smooth tube to a laminar falling film 
[3 1 JJ], corroborating a much earlier recommendation. 
A theoretical study was reported of conjugate heat 
transfer from a condensing fluid on one side of a 
vertical wall to another fluid in natural convection on 
the other side [36JJ]. Conjugate film condensation and 
natural convection at the interface between a porous 
substance and an open space were analyzed for both 
condensation in the free space and condensation in 
the porous material [37JJl. Two simpler alternatives 
were presented and contrasted with the more elab- 
orate solution of the conjugate heat transfer problem 
of condensation on a finned surface, showing satis- 
factory agreement [ 1 JJ]. 

Analysis suggested that forced downflow of vapor 
condensing over a vertical array of horizontal tubes 
suffers a greater reduction in heat transfer coefficient 
due to condensate inundation than gravity-controlled 
vapor flow over the same geometric configuration 
[13JJ]. The effects of downward vapor velocity were 
studied for film condensation on a horizontal tube in 
crossflow [22JJ]. Condensate film was observed to 
undergo transitions from a smooth surface to two- 
and then three-dimensional waves as vapor velocity 
increased. 

Experimental results were presented for con- 
densation of nearly stationary vapor on finned tube 
bundles and mechanisms of condensate irrigation 
were identified [ 17551. An equation was presented cor- 
relating data for condensation on horizontal tube 
bundles for both steam and refrigerant 21 [12JJ]. 
Travelling waves appearing on the underside of hori- 
zontal condenser tubes were investigated [4JJ]. 
Experiments with condensation of nearly motionless 
vapor upon single horizontal cylinders of various 

An integral method, analyzing the two-phase 
boundary layer flow in laminar film condensation was 
presented [32JJ] which allowed for finite vapor density 
and viscosity and accounted for inertia and con- 
vection terms. The method may be extended to 
axisymmetric bodies. Condensing heat and mass 
transfer were studied for laminar and turbulent satu- 
rated vapor-gas flows on a flat plate with negligible 
accumulation of condensed liquid [29JJ]. The effects 
of composition of mixtures of refrigerants 12 and 
22 during forced convective condensation inside a 
horizontal tube were measured [45JJ]. The mist-annu- 
lar flow transition in high mass flux condensation 
in tubes was examined with the conclusions that a 
modified Weber number could discriminate between 
the two flow regimes, with mist flow present for Weber 
numbers greater than 30 [41 JJ]. A mist flow heat trans- 
fer correlation was also proposed from this study. 
Condensation of vapor on a co-flowing liquid in an 
adiabatic converging duct was analyzed and com- 
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pared with experimental results [28JJ]. Motivation 
was the heating of scale-producing fluids at free sur- 

faces. 
Heat transfer coefficients were measured for drop- 

wise condensation of steam at pressures ranging from 
atmospheric down to 1 kPa [19JJ]. Nucleation site 

density appeared to be affected by surface physico- 
chemical condition, and not directly by surface rough- 
ness. Although heat transfer coefficients of low 
pressure steam condensing dropwise on gold and chro- 
mium surfaces were nearly the same, measured droplet 
size distributions were markedly different, with popu- 
lation of the droplets on the chromium surface falling 
off sharply below 7 pm [2OJJ]. A model of dropwise 
condensation was presented based upon the assump- 
tion of existence of a smallest droplet nucleation 
radius [52JJ]. Microscopic observation and light scat- 
tering experiments [26JJ] on ‘breath figures’, patterns 
formed when a vapor condensed to liquid on a cold 
surface, displayed remarkable droplet size uniformity 
for periods less than 300 s, radius growth between 
coalescences proportional to time to the power 0.23, 
and overall radius growth (with coalescence) pro- 
portional to time to the power 0.75. The endurance 
and effectiveness of many organic coatings for pro- 
moting dropwise condensation were determined for 
specimens observed in excess of 12000 h [3OJJ]. The 
sweeping effect of falling drops in dropwise con- 
densation was explored [7JJ], providing a mechanistic 
explanation of observed trends of heat transfer 
coefficient variations with heat flux and with surface 
length. Dropwise condensation on a horizontal tube 
was modeled and measured and the predictions com- 
pared favorably with experimental results [24JJ], 
showing heat transfer coefficients increasing with tube 
diameter at low heat fluxes, independent of diameter 
at higher fluxes. Dropwise condensation curves and 
drop to filmwise transition were measured for several 
fluids on a copper surface treated with an agent to 
promote dropwise condensation [47JJ]. Experiments 
performed with a small cooled surface with various 
patterns of gold coatings to promote dropwise con- 
densation demonstrated that mixed surfaces with 
dropwise and filmwise condensation taking place side 
by side could provide greater heat fluxes than totally 
dropwise condensing surfaces [5 1 JJ]. 

Experiments with condensing jets of low void frac- 
tion mixtures of carbon dioxide in water entering still 
bodies of water were modeled in three ways ; of these, 
only a stochastic, separated-flow analysis including 
finite transport rates and bubble/turbulence inter- 
actions provided reasonable agreement with measure- 
ments [43JJ]. Experiments with steam condensing on 
turbulent subcooled water free of bulk flow and nearly 
free of surface waves yielded a correlation of the con- 
densation coefficient proportional to the r.m.s. value 
of the turbulent velocity [42JJ]. In the same apparatus, 
unstable short high intensity bursts of condensation 
were observed when a threshold value of turbulence 
intensity of the liquid was exceeded [8JJ]. Direct con- 

tact condensation of stagnant saturated steam on a 
horizontal flat surface of slowly moving water was 
studied [6JJ] while varying liquid flow rates and steam 
and liquid temperatures. The liquid flow rate had 
greatest influence on the measured heat transfer 
coefficients. Forced convection within a BWR con- 
tainment was modeled for prediction of environ- 
mental temperature response during a postulated loss 
of coolant accident [5JJ]. Diffusion limited heat trans- 
fer was assumed and results agreed with experimental 
findings. Experimentally and analytically, thresholds 
of pool water subcooling were evaluated that permit 
induction of pressure oscillations as a steam jet dis- 
charges into the pool [2551. Greater subcooling is 
required to allow higher frequency, chugging oscil- 
lations while lower subcooling permits low frequency 
bubbling. The condensation of vapor bubbles detach- 
ing from a surface producing transition boiling in 
subcooled water was observed and modeled [25JJ]. 
The ‘disappearance velocity’ defined as the ratio of 
initial bubble diameter to collapse time, was pro- 
portional to the initial growth velocity of the bubble, 
the square of the wall heat flux, and the cube of the 

wall superheat. 
A kinetic theory treatment of strong condensation 

in the presence of a non-condensable gas has been 
developed, extending an intensive condensation treat- 
ment for a pure vapor [35JJ]. Despite large variations 
in number density and pressure of a non-condensable 
component gas, a kinetic theory analysis suggested 
that a small amount of non-condensable gas has no 
influence on the weakly non-linear condensation or 
evaporation of a vapor [34JJ]. Results reported of film 
condensation of mixtures of refrigerants 113 and 114 
and refrigerants 113 and 11 were well predicted by a 
solution considering the two independent resistances 

of the liquid film and the vapor diffusion boundary 
layer [21551. An approximate method was described 
for calculation of required heat exchange area for 
condensation of gas-vapor mixtures, demonstrating 
satisfactory agreement with experiments [14JJ]. 

The unsteady flux of condensation nuclei in an 
expanding supercooled vapor was analytically deter- 
mined [39JJ]. One-dimensional nozzle flows with non- 
equilibrium condensation were modeled [ lOJJ] and 
extended to supercritical shocks, for which the latent 
heat addition exceeds the heat input for thermal chok- 
ing [9JJ]. 

Options available for improvement of film con- 
densation of pure vapors were reviewed [38JJ]. Heat 
transfer coefficients by condensation upon a vertical 
tube were augmented by as much as a factor of 
2.8 through the use of non-uniform electric fields 
produced with helical wire electrodes [44JJ]. Devel- 
opment of a floating OTEC system prompted exper- 
imentation with the effects of low frequency, large 
amplitude periodic motion of a vertical tube upon 
external filmwise condensation [33JJ]. Heaving (axial 
motion) had little effect, swaying (lateral motion) pro- 
duced enhancements increasing with acceleration, and 
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rolling (simulated by pendulum motion) produced 
enhancements increasing with angular displacement 
and decreasing with frequency at low frequency, 
increasing with higher frequency. 

Hydrodynamic behavior of the condensing section 
of a thermosiphon was experimentally observed to 
be ‘highly turbulized’ [3JJl. Experiments with, and 
modeling of plate-fin devices for fractionating of mix- 
tures were reported [46JJl. Moisture accumulation 
and thermal conductivity increase of fibrous insu- 
lation material due to moisture migration were 
analyzed in a transient manner yielding the wet-dry 
interface location as one of the predicted variables 
[48JJ]. A stable and convergent numerical method was 
described, capable of modeling regenerators in which 
condensation and evaporation occur [49JJ]. Experi- 
ments and analysis were presented for simultaneous 
melting of a vertical planar substrate and con- 
densation upon it in the presence of a non-con- 
densable gas [15JJ]. The reduction of heat transfer 
due to the non-condensable component was stronger 
for melting substrates with lower liquid Prandtl num- 

ber. 

CHANGE OF PHASE- 

FREEZING AND MELTING 

The classical Stefan problem, describing the melting 
or freezing of spheres, cylinders and slabs, continued 
to receive attention. One paper addressed the multi- 
phase case, with more than one moving boundary 
separating distinct phases [l 1 JM]. The problem of 
freezing a saturated liquid inside an infinite circular 
cylindrical container was solved by fixing the bound- 
ary with a logarithmic transformation and obtaining 
an iterative analytic series solution [21JM]. Approxi- 
mate analytical methods [19JM] and integral for- 
mulations [ 1 OJM] were presented for analyzing Stefan 
problems. 

Melting result correlations, based on experiments, 
were presented for both pure and impure substances 
[49JM]. A new and efficient algorithm was proposed 
to be incorporated with the equivalent heat capacity 
model for the finite element analysis of melting and 
freezing problems [24JM]. A comparison was made 
between an approximate analytical solution and a 
numerical finite difference solution for the one-dimen- 
sional solidification of a phase change material of 
finite size [2JM]. A finite element numerical method 
based on enthalpy was proposed for the solution of 
two-dimensional problems dealing with phase change 
at fixed temperature [4JM]. An algorithm was 
described that combines a temperature formulation 
with a finite element treatment of the differential equa- 
tion and discontinuous integration within two-phase 
elements to avoid the necessity of regularization 
[9JM]. Based on the effective heat capacity charac- 
teristics of biological materials during freezing, a 
short-cut equation for predicting their temperature vs 

time behavior during freezing and thawing has been 
derived [38JM]. 

The problem of the flowfield, heat transfer, and 
melting rate of a solid body immersed in an otherwise 
quiescent, hot fluid is an interesting example of free 
convection, differing from the usual free convection 
problems in that the dominant buoyancy force is due 
to the fluid-melt density difference rather than the 
familiar thermal expansion [6JM]. 

Simple upper and lower limits for the full sol- 
idification (melting) time of isothermally heated slabs, 
cylinders and spheres were derived [5JM]. The method 
of cubic spline collocation was employed to solve the 
governing equations of the processes of inward sol- 
idification occurring in slabs, cylinders and spheres 
bounded by a finite wall subject to a convective 
boundary condition at the outer surface [42JM]. A 
boundary fixing series technique, previously used on 
melting and freezing problems where the material was 
initially at the fusion temperature, was generalized 
to initially subcooled melting cylinders and spheres 
[30JM]. Experiments and supplementary numerical 
solutions have been performed to study the melting 
of ice [36JM] and other materials [45JM] encapsulated 
in a horizontal tube. A methodology was set forth for 
the numerical solution of transient two-dimensional 
freezing of a material in a vertical tube and results 
presented for 99% pure n-eicosane, a material for 
which experimental results are available [47JM, 
48JM]. Timewise measurements of in-tube melting in 
the presence of circumferentially non-uniform heating 
enabled identification of the pattern of melting for 
different types of heating and various tube inclinations 
[46JM]. Melting of ice in porous media has been inves- 
tigated experimentally and analytically for horizontal 
and vertical cylindrical capsules [55JM]. The roles of 
natural and forced convection during solidification of 
pure tin in an annular crucible were described [54JM]. 

A theoretical analysis was presented for the phase 
change process occurring in a cylindrical annulus in 
which rectangular, uniformly spaced axial fins, span- 
ning the annulus, are attached to the inner isothermal 
tube, while the outer tube is kept adiabatic [35JM]. 
A two-dimensional numerical simulation of outward 
melting of a material contained in a horizontal cyl- 
indrical annulus was performed [23JM]. The sol- 
idification of a subcooled metallic sphere was analyzed 
by an enthalpy method [25JM]. Melting heat transfer 
in an inclined rectangular enclosure was investigated 
experimentally [57JM]. A study defined the limita- 
tions of using a one-dimensional approximation for 
analyzing buoyancy and surface tension driven natu- 
ral convection in rectangular cavities during sol- 
idification [34JM]. 

Heat transfer during the melting of ice around a 
horizontal cylinder was investigated experimentally 
[58JM] and numerically [22JM]. An approximate 
three-dimensional solution for melting or freezing 
around a buried pipe beneath a free surface was pre- 
sented [61JM]. Melting around a horizontal finned 
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tube was studied [3JM] and a comparison of the phase Studies of close-contact melting [32JM, 33JM], con- 
change about finned and bare tubes was performed tact melting [39JM], and contact ablative melting 
[40JM, 41 JM]. [3 1 JM] were performed. 

Results were presented of calculations of the melt- 
ing rate of a sheet of finite width under the effect of 
variable power heat flows [52JM]. The two-dimen- 
sional steady-state shape of a solidified region, such 
as a frost layer, was determined analytically for for- 

mation on a plate that is convectively cooled [44JM]. 
The solidification of an infinite liquid slab by linear 
convection cooling from the adjacent air was con- 
sidered [20JM]. The phenomenon of melting from 
a flat plate in a porous medium in the presence of 
boundary-layer natural convection was analyzed by 

assuming that the melting takes place at a steady rate 
[27JM]. The role of natural convection on solid-liquid 
interface motion and heat transfer was described for 
melting and solidification of a pure metal on a vertical 
wall [16JM, 57JM]. The melting process of ice-air 
composite materials was investigated for the case 
where heat was supplied from the bottom and lost 

from the top of the body [lJM]. Experiments were 
performed to gain an understanding of the convection 
process occurring in a warm liquid pool as it pene- 
trates into an underlying meltable solid of less dense 
material [ 15JMJ. The linear convection instabilities of 
a fluid layer of binary alloy, cooled from above and 
consequently frozen at the bottom, were described 

[26JM]. 

The solidification process during the continuous 
casting of an ingot by withdrawal from a mold was 
analyzed assuming a constant convective heat transfer 
coefficient at the outside surface of the ingot [43JM]. 
The continuous casting problem was also analyzed via 
the variational inequalities approach [37JM]. Three 
papers describe gas melting. A three-dimensional 
numerical method was presented to simulate the effect 
of electric boosting on glass melt circulation and heat 
transfer in a glass melting furnace [53JM]. Math- 
ematical models were constructed to predict the tem- 
perature distribution and heat transfer in a glass batch 
blanket and to simulate the effects of individual fac- 
tors on the conversion process [59JM] and to calculate 
Joule heat release, glass flow and heat transfer in 
electric glass furnaces [8JM]. 

An analysis of one-sided freezing of moist soil 
included the allowance for the phase transition of 
moisture in a certain temperature range and moisture 

migration in the thawed and freezing zones [60JM]. 

A theoretical study was conducted to investigate 
the effect of freezing on the heat transfer charac- 
teristics for the turbulent flow of a heat generating 
fluid in a cooled circular tube [28JM]. The critical 
condition for solidification blockage of laminar 
straight pipe flow in an arbitrary piping system was 
derived by comparing two pressure differences in the 
cooling section, one of which depends on the system 
(driving pressure difference), and the other is given by 
a numerical calculation of steady laminar pipe flow 
with internal fluid solidification [7JM]. 

A dependence was proposed for determining the 
heat transfer coefficient at the boundary of an ice mass 

and a water film running down the ice in the presence 
of thawing [ 17JM]. An experimental investigation of 
snow melting by showering the snow layer with a 
calcium chloride aqueous solution clarifies the influ- 
ences of initial concentration of the solution, amount 
of showering solution and density of snow sample on 
the melting rate [29JM]. A paper described the melting 
of a horizontal ice layer from above by an aqua- 
solvent with a low solidification point (calcium chlor- 
ide and urea solutes) [5 1 JM]. 

RADIATION IN PARTICIPATING MEDIA AND 

SURFACE RADIATION 

Radiation in participating media 

The melting of a semi-transparent material by radi- 
ation was studied experimentally and analytically 
[12JM]. A numerical analysis was performed of ther- 
mocapillary flow in a rectangular cavity during laser 
melting [50JM]. In a study of the temperature fields 
associated with laser melting and subsequent recrys- 
tallization of a thin silicon film on a glass substrate, 
particular attention was paid to the change in the 
material properties with temperature and to the 
change in reflectivity which occurs when the silicon 
changes phase [18JM]. Companion papers described 
exact solutions to problems associated with laser melt- 
ing of solids, one for time intervals less or equal to 
the transit time [13JM] and the other for larger time 
intervals [ 14JM]. 

Reference [94K] presents and compares two tech- 
niques for evaluating the emission integrals used 
for discrete ordinates solution. Vector algorithms 
for Chandrasekhar H-functions for inhomogeneous 
media are reported [55K]. By combining a weighted 
set of distributed internal sources, the photon path 
length analysis is extended to planar layers with arbi- 
trary temperature distributions [ 102K]. A generalized 
spherical harmonics solution for radiative transfer 

models, including polarization effects, emphasizes the 
numerical aspects for accuracy [45K]. The spherical 
harmonics approximation solution to the equation of 
transfer in plane-parallel, homogeneous, anisotropic 
scattering (Rayleigh and Henyey-Greenstein) media 
are obtained by a Chebyshev collocation method 
[62K]. For isotropic scattering media of the same 
geometry, ref. [112K] reports on a new, efficient 
method of analysis, which uses the natural eigen- 
functions of the problem. Four-flux model solutions 
of special types of Lorenz-Mie scatter centers embed- 
ded in a slab are presented [76K]. A generalized 
Eddington approximation for the slab geometry is 
presented [124K]. Matrix formulations are presented 
for planar scattering media using the discrete-ordi- 
nates and the matrix-operator methods [83K]. A 
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modified Monte Carlo method is reported [64K], 
which reduces the computing time and improves the 
convergence stability. 

A modified FN method is used to study the radiative 
transport in a planar medium with azimuthally 
unsymmetrical incidence [67K]. A zonal method is 
proposed [2K], which takes into account the aniso- 
tropic character of volumetric and surface scattering. 
Solution of the radiative transfer in a two-phase 
medium for a Markov process is reported [ 120K]. The 
Sobolev probabilistic method [ 121 K] is used to obtain 
an exact solution of the equation of transfer in a 
gas containing particles of its condensed phase. A 
linearized differential approximation is invoked to 
consider the transient flow of optically thick, dusty 
gas in a vertical channel [ 12K]. Benchmark solutions 
are presented, four or five digit accuracy, for the time- 
dependent reflected photon intensity from an aniso- 
tropic scattering semi-infinite medium [44K]. 

Spherical harmonics approximation is used to 
model radiative transfer in a finite length cylindrical 
vessel, containing high temperature aerosols that 
absorb, emit and scatter [77K]. The integral form of 
the solution of the equation of transfer is shown to 
reduce the number of independent variables from 
three to one for isotropically scattering, inhomo- 
geneous solid cylinders [l 1 lK]. Reference [80K] con- 
siders numerical solutions for axisymmetric, finite 
cylindrical enclosures containing radiatively parti- 
cipating gases and particles. A solution method for 
solving the equation of transfer in an isotropically 
scattering, inhomogeneous solid sphere is also pre- 
sented [113K]. The far field solution and the energy 
flux from a moving source in an anisotropic medium 
is presented [68K]. A rigorous formulation of the prob- 
lem of radiative transfer in an anisotropic, fibrous 
medium shows a strong dependence of the transport 
properties on the different orientations of fibers [71K]. 

Theoretical and experimental results of back- 
scattering from an optically thick, scattering medium 
exposed to a laser beam are presented [87K]. A 
method based on the principles of invariant imbed- 
ding, is presented for solutions in two-dimensional 
anisotropically scattering medium exposed to arbi- 
trary boundary conditions [106K]. A three-dimen- 
sional code, based on the diffusion approximation, is 
used to model the spatial distribution of radiant 
energy from volumetric isotropic sources [127K]. 

A hybrid Galerkin-iterative scheme is used to pro- 
vide a short time solution for coupled conduction and 
radiation in a participating slab [107K]. Radiation 
scaling laws are applied to model combined mode 
heat transfer in planar geometry [70K]. The transient 
temperature distribution of an absorbing, emitting 
multilayer composite wall, suddenly exposed to radi- 
ative flux, is influenced by both radiation and con- 
duction in each layer [ 116K]. Effects of the non-linear 
heat generation, and combined conduction and radi- 
ation treated at the optically thick limit, on the 
vibrational heating of semitransparent polymers are 

considered [SOK]. The effect of scattering in one layer, 
when the non-stationary radiationconduction prob- 
lem in a system of two layers is considered, is presented 
[97K]. 

The combined natural convection and radiation 
heat transfer from pin-fin arrays in air is measured, 
and the contribution from the radiation is determined 
analytically to be in the 2540% range [104K]. The 
Milne-Eddington approximation is used to express 
the two-dimensional radiative transfer inside a hori- 
zontal cylindrical annulus filled with absorbing, emit- 
ting non-gray Boussinesq fluid [88K]. A numerical 
study of non-gray gases in a flow system, compares 
the results with those obtained by using a gray gas 
assumption [54K]. The effect of radiation on the heat 
transfer in the boundary layer flow along a flat plate 
are described as a prescribed function of distance from 
the slit, where the constant velocity flow is introduced 
into a fluid at rest [21K]. The presence of both the 
radiation and the magnetic fields is found to resist 
the formation of shock in electrically conducting and 
thermally radiating gases, which are treated as opti- 
cally thin [lOOK]. An asymptotic representation of a 
point-source thermal explosion, dominated by radi- 
ative heat transfer, makes it possible to analyze the 
generation of an isothermal shock wave [95K]. Radi- 
ative energy transfer and equilibrium chemical reac- 
tions in the compressed shock layer around three- 
dimensional and axisymmetric bodies are considered 

15Kl. 
The Surinov generalized zonal method is applied to 

solve for the radiative transfer in a conical chamber 
with absorbing and anisotropically scattering medium 
[48K]. Locally variable radiative heat transfer 
between long cylinders that contain emitting and 
absorbing gases is calculated [60K]. A loss of visibility 
study considers laser reflection from a scattering 
medium with a reflecting substrate [74K]. Least 
squares smoothing of direct-exchange areas in zonal 
analysis, using Lagrange multipliers, is presented 
[69K]. A local entropy production expression includes 
the effect of radiation, expressed in terms of radiative 
stress [6K]. A study of the characteristics of fine- 
particle semi-transparent suspensions considers the 
optical depth and boundary condition effects [59K]. 
Liquid-droplet radiators for spacecraft thermal con- 
trol are shown to be 3-5 times lighter than con- 
ventional radiators [ 11 OK]. Calculations of emitted 
radiation from boron slurry-fueled jet engine exhaust 
considers the effect of B,03 particles [86K]. 

Radiation in combustion systems 
A two-dimensional model is considered when the 

heat ray method is applied to radiative transfer prob- 
lems in furnaces [53K]. The total effective absorptivity 
and emissivity of fluidized bed combustors are 
studied, and the important dimensionless parameters 
that are needed in the radiative transfer correlations 
are pointed out [16K]. An axisymmetric cylindrical 
enclosure, containing inhomogeneous and non-iso- 
thermal gases and particles, is studied to model a 
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typical gas-turbine combustor [79K]. Direct exchange 
areas for the zone method are provided to evaluate the 
radiative transfer in rectangular, gas-filled furnaces 
[118K]. An algorithm for solving the conjugate prob- 
lem, which arises in furnaces with a protective atmo- 
sphere, is presented [73K]. The effect of isotropic and 
anisotropic scattering, on the heat transfer in semi- 
infinite furnace slabs, are studied by using the zone 
and the Monte Carlo methods [39K]. The enhance- 
ment due to the addition of a solid surface, between 
parallel plates containing non-gray combustion gases, 
is shown to be as high as 30% [54K]. The influence 
of the wall emissivity on the performance of high 
temperature, radiation dominated furnaces is con- 
sidered [35K]. A review of the models useful for cal- 
culating radiative transfer in furnaces is presented 
[123K]. 

The influence, of the burner geometry and the fluid 
parameters, on the local and the mean emissivity of 
gas diffusion flames, is studied [ 11 SK]. Radiation from 
a methane-air flame which is electrically augmented 
to enhance the flame temperature is examined [61K]. 
Reference [31K] presents analytical solutions for the 
structure and the burning speeds in rich mixtures of 
combustible solid particles and gaseous oxidizer, 
viewed as absorbing-emitting media. Light trans- 
mission and emission measurements, of the defla- 
gation of ammonium perchlorate with carbon black 
and copper chromite catalyst additives, is used to 
quantify the amount of particle radiative feedback 
[ 17K]. The dynamic light scattering technique is used 
to measure the soot particle size distributions, number 
density, and the total volume, in premixed methane- 
oxygen flames [99K]. Reference [40K] establishes a 
framework for computing the scattering charac- 
teristics of agglomerated soot spheres, and considers 
the effects of radial inhomogeneity and agglomeration 
on light scattering measurements in flames. Emission 
measurements of high temperature water vapor, pro- 
duced as exhaust gas from burning natural gas and 
oxygen, are compared with predicted values [27K]. 

Surface radiation 
A numerical method for calculating the con- 

figuration factor, based on the unit-sphere method, 
uses the computer graphics technique of ray casting. 
The method is shown to give accurate results for com- 
plex geometries and does not suffer from statistical 
errors associated with the Monte Carlo methods 
[78K]. Reference [105K] discusses the reliability of the 
Monte Carlo method for calculating the view factors. 
A plating algorithm, where the emissivities of surfaces 
in an enclosure are made to vary from one to its actual 
value, is used to obtain the script-F transfer factors 
[37K]. The concept of multiple Markov chains is 
applied to develop a stochastic approach for radiative 
exchange in enclosures with directional-bidirectional 
properties [84K]. Radiative heat transfer across and 
down a long cylindrical capillary pore is presented 
[117K]. A study compares simple, surface radiation 

exchange models that can be used to simulate the 
thermal behavior of buildings [3K]. Conductive and 
radiative heat transfer in circular and longitudinal 
finned tube systems are measured experimentally and 
compared with numerical predictions [108K]. An 
approximate computation scheme is proposed to pre- 
dict the heating of massive, optically dense bodies in 
a radiation dominated furnace [32K]. An asymptotic, 
large time solution for the convection Stefan problem 
with surface radiation is presented [114K]. A model 
for the interaction between intense radiation and a 
liquid, takes the absorption coefficient of the liquid 
into account [46K]. Heat transfer from a source in a 
transparent cavity with a conducting shell is con- 
sidered [91K]. A radiative transfer model for severe 
fuel damage analysis accounts for anisotropic effects 
of reflected radiation, with simplified view factor cal- 
culations [ 103K]. 

Radiative properties 
A method, for determining the optical properties of 

semitransparent materials at high temperatures from 
two independent measurements, is used to obtain the 
properties of fused quartz and sapphire at 1000°C 
and 0.613 pm [82K]. Reference [30K] describes an 
experimental rig which measures the directional- 
hemispherical transmittance and reflectance of porous 
materials in the 9-l 1 pm range. Optical constants of 
strongly absorbing media are obtained from con- 
sidering the minimum, parallel polarized reflectance 
measurements [75K]. Two new techniques for deter- 
mining the thermal radiative properties of thin fab- 
rics are reported [19K]. A technique, developed for 
evaluating surface coating effectiveness, leads to an 
analysis of the characteristics of a simple energy 
absorption transducer [ 11 K]. The method of moments 
is used to model conduction and radiation in a 
translucent scattering medium, and the predicted 
temperatures are compared with the experimental 
measurements to obtain the radiative properties 
[92K]. Analytical error estimates for the time-depen- 
dent radiative-transfer inverse problem, used to infer 
the albedo and the Legendre moments of the phase 
function, are presented [36K]. 

Radiative characteristics for fly ash and coal are 
obtained numerically by modeling them as clouds of 
spherical particles illuminated by blackbody radiation 
[14K]. The only reported results of the optical con- 
stants of propellent-grade ammonium perchlorate are 
obtained by a combination of dispersion equation 
curve-fitting and normal spectral reflectance measure- 
ments [89K]. Simple expressions for the temperature 
dependence of the index of refraction of sapphire are 
given [ 109K]. Calculations of the mean hemispherical 
emissivity of hot glass in various configurations are 
presented [57K]. Reflective characteristics are used to 
study the radiation properties of industrial refrac- 
tories of zirconium dioxide [ 126K]. A stratified media 
theory is applied to the results of an experimental 
study of the emissivities of oxide films on metal sur- 
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faces [4K]. Infra-red radiative heat transfer in highly 
transparent silica aerogel is obtained by measuring 
the extinction [20K]. 

A theoretical investigation of the dependent scat- 
tering properties are presented, assuming the Ray- 
leigh-Debye scattering approximation, and the scat- 
tering efficiencies are shown to be smaller than the 
independent efficiencies [22K]. An experimental inves- 

tigation of the dependent scattering compares the 
measured bidirectional transmittance and reflectance 
to the theoretical predictions [125K]. Computer cal- 
culations, which apply the theory of diffraction, show 
a range of concentrations where the radiative prop- 
erties of the dispersion is dependent on the distance 

between the particles [98K]. A localized approxi- 
mation to the generalized Lorenz-Mie theory is intro- 
duced and compared with the Rayleigh-Gans theory 
[49K]. A simple numerical scheme, based on the 
Fraunhofer approximation, is used to calculate the 
forward scattering by a sphere located anywhere in 
a Guassian beam [24K]. An experimental study 
designed to distinguish between the transmitted and 
the forward scattered intensities, compares the mea- 
sured results with calculations [ lOK]. The asymptotic 
form of the Mie-scattering amplitude, useful for large 
size parameter calculations, is presented [7K]. Kra- 
mers-Kronig relations, which can be written inde- 
pendent of any material constants, are used to infer 
refractive indices from spectral extinction data, with- 
out any knowledge of the index of refraction at any 
frequency [66K]. Correction charts for particle size 
distribution measurements, needed due to the multiple 

scattering effects, are presented [47K]. 
A perturbative approach to scattering by a single- 

layered sphere is applied to the case of absorption of 
light by water droplets contaminated with soot [13K]. 
Using a full wave approach, the particle surface 
roughness is shown to have a significant effect on the 

diffuse specific intensities [9K]. Scattering and depo- 
larization by conducting cylinders with rough surfaces 
are also considered [8K]. The multiple Laplace trans- 
form is applied to study the electromagnetic reflection 
from arbitrary smooth convex cylinders [56K]. A tech- 
nique is given for computing the scattering by targets 
which can be subdivided into circular disks [51K]. 
The iterative extended boundary condition method is 
utilized to calculate the scattering and the absorption 
of aerosols that are modeled by spheroids of high 
aspect ratio [58K]. A study of the scattering from non- 
spherical particles, which have radii described as 
functions of Chebyshev polynomials, shows that con- 
cavity enhances the spherical-nonspherical differ- 
ences [81K]. Irregularities, on the surfaces of particles 
that are large compared with the incident wavelength, 
are modeled by a function of fractal type [ 1 SK]. 

The penetration of pulse of laser radiation through 
the atmosphere is shown to allow for the cooling of 
the water vapor in the channel around the beam, when 
the pulse duration is controlled [72K]. A wide-band 
absorption coefficient integration kernel is intro- 

duced, which transforms the wave number integration 
to a more convenient integration over the absorption 
coefficient [38K]. The infra-red absorption properties 
of carbon dioxide are the topic of a number of studies 
[IK, 28K, 29K, 33K, 41K, 93K, 96K]. Absorption 
properties of carbon monoxide [43K, 90K], water 
vapor [33K], and gaseous methane [25K, 26K, 42K] 
are also considered. 

Experimental systems 
A unique apparatus is developed, which can be used 

to measure the emittance of semitransparent, porous 
and particulate media [ 119K]. Correction factors, 
which are necessary for integrating spheres with one 
port, when the sample is used in place of an open 
port, is calculated with a finite difference method 
[63K]. Infra-red lasers in the 1 l-l 3 or 14 pm wave- 
lengths operate by pumping NH, [65K, lOlK]. 
Characteristics of silicon avalanche photodiodes are 
examined to assess their suitability for photon cor- 
relation measurements [ 18K]. An optimized geometry 
of far-IR photoconductive detectors is presented 
[122K]. A cryogenic charge amplifier system is 
developed for an InSb photodiode array for use in 
high-resolution infra-red spectrometers [52K]. Dark- 
ening of silver halide optical fibers, transparent in the 
middle infra-red and useful for transmitting a CO, 
laser wavelength of 10.6 pm, is considered [23K]. Mid- 
infra-red reflectance spectra of sulfur, gold, KBr, 
halon, and recommendations to their usefulness as 
reflectance standards are presented [85K]. 

NUMERICAL METHODS 

Numerical methods are described and used in many 
papers. In this review, the papers that focus on the 
application of a numerical method are included in 
the appropriate application category. The papers that 
emphasize the details of the numerical method are 
reviewed in this section. 

Among topics of general interest, ref. [76N] surveys 
the application of parallel and vector computations 
in heat transfer and fluid flow. The use of various 
spreadsheet programs for solving heat transfer prob- 
lems on microcomputers is described in ref. [19N]. 
Various strategies for solving linear and non-linear 
simultaneous equations have been described in refs. 
[13N, 41N, 65Nj. Reference [49N] deals with a tech- 
nique for grid generation. 

In the area of heat conduction, a number of 
methods have been developed for non-linear inverse 
heat conduction [32N, 33N, 72N, 81Nj. Finite element 
analysis has been applied to non-linear heat con- 
duction problems [74N]. Reference [34N] proposes 
a unified model for axisymmetric heat conduction. 
Integral transform techniques have been combined 
with the finite element method for heat conduction 
[15N]. New types of finite elements have been pro- 
posed for heat conduction [78N, 79N]. Applications 
of boundary element methods to heat conduction are 
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presented in refs. [lN, 55N, 58N]. Various novel 
techniques for transient heat conduction problems 
have been presented in refs. [8N, 12N, 2lN, 47N, 
77Nj. 

Problems involving phase change have been 
analyzed numerically. Reference [3N] pertains to the 
growth of crystals from the melt, while numerical 
techniques for the Stefan problem are developed in 
refs. [9lN, 93NJ The concept of lumped capacitance 
has been used in finite element methods for phase 
change [67N]. 

The question of numerical accuracy for the com- 
bined convectiondiffusion problem continues to be a 
topic of intensive research. Reference [66N] evaluates 
eight different schemes for the problem. The influence 
of upstream approximations in curved grids is 
discussed in ref. [27N]. Tetrahedral elements for 
convection-diffusion problems are employed in ref. 
[54N]. A new skew, upwind procedure is presented 
in ref. [75N]. Weighted finite difference methods are 
proposed in refs. [17N, 64N]. A new finite element 
formulation for fluid flow and convection-diffusion 
problems is developed in refs. [35N-39Nj. Additional 
studies of the advection equation are contained in refs. 
[SN, 20N, 40N, 59N, 62N, 8ON]. 

Adaptive grid methods have been investigated 
[5lN, 6lNj. Multi-grid procedures for the solution of 
recirculating fluid flow have been developed [52N, 
86N-88N] and shown to be significantly more efficient 
than other available methods. The multi-grid tech- 
nique is also used for the solution of the Euler equa- 
tion [45N]. Techniques used for the solution of the 
Euler or Navier-Stokes equations are compared in 
refs. [2N, 16N, 89Nj. Other studies related to the Euler 
equation have been reported in refs. [ 12N, 44N, 63N, 
94Nj. Reference [7ON] presents an implementation of 
the Osher upward scheme. 

A large number of new methods have been pro- 
posed for the solution of compressible and incom- 
pressible fluid flows. Methods that employ the bound- 
ary layer characteristics of the flow are presented in 
refs. [22N, 3lN, 56N, 92Nj. The vorticity-based 
methods are described in refs. [25N, 95N]. Cal- 
culations have been presented for compressible flow 
in refs. [4N, 90N]. Among the new methods proposed 
for fluid flow refs. [42N, 43N] use operator splitting. 
The use of general orthogonal coordinates is described 
in ref. [71NJ The problem of temperature-velocity 
coupling is addressed in ref. [28N], while an equal- 
order interpolation method is worked out in ref. 
[69N]. A number of other techniques for solving the 
flow equation have been described in refs. [6N, 29N, 
30N, 57N, 68N, 73N, 83N, 84N]. 

Comparisons of a class of numerical techniques for 
certain test problems are presented in refs. [ 1 lN, 46N, 
60N]. Various special aspects of numerical methods 
such as grid skewness, nonlinearity, convergence rate, 
and mesh refinement are discussed in refs. [7N, lON, 
23N, 26N, 53N]. Different schemes have been com- 
pared for solving the flow past a sphere [14N] and 

around a cylinder [9N]. Analysis of problems with 
free surfaces has been described in refs. [18N, SON]. 

TRANSPORT-PROPERTIES 

Thermodynamic 
A number of papers address the determination of 

thermodynamic properties. Acoustic gas analyzers for 
determining binary-gas composition are described 
[58P, 76P] and a thermodynamic method for meas- 
uring local steam quality given [26P]. An image pro- 
cessing system and diamond-anvil cells are used to 
obtain pressure-volume measurements [74P], gas 
expansion to determine volumes [33P], and a den- 
sitometer for gaining absolute measures of tem- 
perature dependence of density, partial volumes, and 
thermal expansivity of solids and liquids [17P]. Also 
reported is an improved method for precisely deter- 
mining the compressibility factor from measurements 
of refractive index [ 1 lP]. 

Phase transition effects are considered: first the 
melting lines of simple substances, their ther- 
modynamic similarity and behavior of thermal prop- 
erties [69P] and second, the relation between ther- 
mophysical properties of new ceramic materials and 
this phenomenon [86P]. Other techniques for meas- 
uring properties include a new procedure for obtain- 
ing the heat of solid deformation [49P], a new instru- 
ment for acoustically measuring complex adiabatic 
compressibility in liquids [73P] and a simple pro- 
cedure for determining the Seebeck coefficient of ther- 
moelectric materials [32P]. 

For specific substances there is a new equation of 
state for aluminum [4OP], measured high pressure 
densities for argon-helium and argon-neon mixtures 
[83P], and a transformed psychrometric chart for use 
in drying technology [7OP]. A dual-slope method is 
presented for measuring specific heats [62P]; other 
specific heat data are presented for n-pentane, n-hex- 
ane and n-heptane at high pressure [2OP]. N&Al at 
low temperature [39P], and some stainless steels and 
FeNi alloys [16P]. For black phosphorus thermal 
and elastic properties are reported [89P]. 

Transport 
Interest in special systems and ordinary ones at 

extremes of temperature continues. A model and cal- 
culations of transport coefficients for polyatomic 
gases are given [81P, 82P] as well as a discussion of 
the structure of liquids and their thermal properties 
[2lP]. For two-phase materials, a model is presented 
for estimating transport quantities [lP]. Another 
study [3OP] shows how thermal properties may be 
estimated by a non-linear least squares method. For 
electrically conducting materials thermal transport is 
studied using the transient hot-strip technique [34P]. 
For chemical-equilibrium flows of partially dis- 
sociated and ionized gas mixtures, the effective trans- 
port coefficients are defined and computed [8OP]. 
Transport properties of high purity, polycrystalline 
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titanium diboride are reported [85P] and in the area 
of drying technology some physico-thermal properties 
of rice bran will be of interest [24P]. 

Diffusion rates in solids due to shock compression 
are reported [46P] as is the development of a new fast 
response probe for studying diffusion in atmospheric 

air [lop]. 
Thermal diffusivity measurements are described at 

low temperature using the laser-flash method [48P], 
for solids by the two-beam photoacoustic phase 
measurement [54P], and the quantity defined for shift- 
ing composition systems [23P]. The increasing occur- 
rence of special systems undergoing heat transfer leads 
to the study of equivalent thermal diffusivities of non- 
homogeneous materials by numerical means [9P], the 
report of thermal diffusivity in plasma sprayed multi- 

coatings (apparent) [3 1 P], powders and porous media 
[61P], ceramics [65P], and uni-directional fiber- 
reinforced composites [75P]. 

A number of experiments for measuring thermal 
conductivity are presented. For systems under hydro- 
static pressure techniques are given for determining 
thermal conductivity (and heat capacity) [3P] ; also 
under pressure, a d.c.-a.c. hot-wire procedure for 
determining thermal conductivity (and other ther- 
mophysical properties) is described [52P]. A transient 
technique for measuring thermal conductivity is first 
theoretically developed [56P] and the apparatus 
described [57P]. For non-homogeneous samples the 
apparent thermal conductance is measured [5lP]. 
Using a model of a semi-infinite body with a pulsed 
annular heat source, thermophysical characteristics of 
materials may be determined without loss of their 
integrity [66P, 67P]. 

Improvement in accuracy is the objective of two 
studies : an experimental and theoretical investigation 
of the influence of radiative heat transfer on the effec- 
tive thermal conductivity of liquids [29P] and a pro- 
posal, with special respect to connection and radiative 
effects, for thermal conductivity standards to be used 
in establishing liquid thermal conductivities [28P]. The 
instability of thermal conductivity values due to strati- 
fication is considered as well [87P]. When using the 
transient line-source technique it is demonstrated that 
the end-effect error can be kept so small as not to 
require correction [47P]. For guarded hot-plates ther- 
mal imbalance errors and effective area are discussed 
[55P]. The general solution for non-linear steady-state 
heat conduction in a metal conducting electrical cur- 
rent is solved for any temperature variation in thermal 
and electrical conductivities, allowing interesting 
comparisons to be made between the variable and 
constant conductivity cases [9OP]. 

The variety of systems for which thermal con- 
ductivity data is required is apparent in the number 
of papers having this purpose: the measurement of 
effective thermal conductivity of porous spheres at 
high temperature [SP], thermal properties of moist 
porous media below 0°C [78P], and measured thermal 
conductivity of packed metal powders at different 

densities and an associated theoretical model [35P, 
53P]. The effect of temperature on viscoplastic pore 
collapse is also described [14P]. In a related vein effec- 
tive thermal conductivities of loose granular materials 
are proposed [64P], a heat pulse, line-source method 
for determining thermal conductivity of consolidated 
rocks is reported [27P], and the effect of moisture 
on the thermal conductivity of lightweight aggregate 
concrete described [71P]. 

Composite and multilayer systems also attract keen 
interest as evident by a monograph for calculating 
the transverse thermal conductivity of uniaxial com- 
posite lamina [43P], coated filler composites thermal 
conductivity [37P], effective thermal conductivity of a 
composite material with spherical inclusions [22P], 
and for fiber-reinforced materials [77P]. 

In the agricultural area experimental thermal con- 
ductivities are reported for grains using a line-source 
method [41P] and for haylage at various bulk densities 
and moisture content [45P]. The thermal conductivity 
of tin between 15 and 500°C is given [38P]. Also at 
temperatures above atmospheric thermal conductivity 
values are reported for evacuated, transparent silica 
aerogel tiles [13P], spine1 ferrite (400-1000 K) [25P], 
and plasma sprayed stabilized zirconia and nickel- 
based coatings [12P]. Factors having an effect on the 
mean effective thermal conductivity of a melt of glass- 
plastics are reported [42P]. 

In the lower temperature regime thermal con- 
ductivity results are given for ethane (110-325 K) 
[63P], pure ice and hydrates [4P], and the effect of 
plastic deformation on bismuth alloys between 1.5 
and 300 K presented [72P]. A simple model of the 
thermal impedance present in the heat transfer 
between dielectric solid and superconducting metal 
with deformation caused defects is found consistent 
with new and published data [88P]. 

In the optical area, thermal conductivities of optical 
coatings are reported [59P] ; in the space-vehicle pro- 
pulsion area thermophysical properties of propellents 
are given [68P]. 

Thermal insulations attract the attention of a num- 
ber of investigators. The nonsteady-state behavior of 
such materials is discussed [5OP], the local thermal 
conductivity in inhomogeneous glass fiber insulations 
analyzed [6OP] and the temperature variation of the 
thermal conductivity of self-pumping multilayer insu- 
lation reported [36P]. For spray-applied insulations 
the moisture gain and influence on effective thermal 
conductivity assessed [6P]. The efficacy of rigid poly- 
urethane foam is analyzed by examining the heat 
transfer mechanisms through the foam components 
(gas voids and solid sections) with the prospect of 
optimizing the system for maximum insulating 
efficiency [18P]. The influence of lining properties on 
the control characteristics of industrial furnaces is 
modeled to obtain wall temperature oscillations [44P]. 

Where surface tension is a consideration, a cubic 
equation for its prediction is described [8P]. 

For contributions to the knowledge of viscosity 
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there are reports on argon at high densities [79P] and 
the density influence on benzene and methane [84P]. 
A description of a capillary viscometer for evaluating 
low-viscosity solutions at elevated temperatures [19P], 
one for low frequency, low shear rate measurements 
[7P], and a dual chamber capillary viscometer to study 
concentrated polymer solutions at elevated tem- 
peratures [2P] comprise the experimental techniques 
report. 

HEAT TRANSFER APPLICATION-HEAT PIPES 

AND HEAT EXCHANGERS 

Interest continues to be shown in various schemes 
for improving heat exchange under a variety of special 
applications. 

For packed beds a two-part study [ lOlQ, 102Q] 
examines particle to particle heat exchange first by 
predicting performance characteristics through mode- 
ling and simulations and then by examining the design 
characteristics and performance of a prototype. Other 
papers report the results of laboratory-scale tests on 
gas-solid fluidized bed behavior and the influence on 
bed properties [ lQ] ; the heat transfer characteristics 
of a low-pressure-loss fluidized-bed exchanger with 
single row tubes [4Q] ; and a model for enhanced 
cooling near the edge of a packed bed [ 17Q]. A review 
of heat recovery systems from solid particles or gas 
with very high temperatures [74Q] should be useful. 
Related work concerns the liquid content and heat 
transfer in trickle-bed reactors during intensive gas- 
liquid interaction [68Q] and the development of a high 
efficiency packed bed heat exchanger for residential 
application [93Q]. 

Devices concerned with condensation heat transfer 
includes horizontal plain and low-finned condenser 
tubes, examined for the effect of fin spacing and drain- 
age strips on heat transfer and condensate retention 
[113Q] ; a model of heat and mass exchange on a 
rectification plate with cold reflux [51Q] ; and heat 
recovery from a spray dryer using a glass tube ex- 
changer [19Q]. 

The role of contact resistance is taken up by a study 
of the influence of interface thermal contact resistance 
on the heat transfer performance of prestressed duplex 
tubes [8Q]. A related paper examines the thermal con- 
striction resistance at the interface of double tubes 
used increasingly in solar energy applications [109Q]. 
The importance of crevices formed between tubes and 
tube plate on heat exchanger operation is considered 

PQI. 
A general article describes the features of direct 

contact heat exchangers noting their increased per- 
formance, decreased first cost and increased range 
of application [ 13Q]. For liquid-liquid direct-contact 
heat exchangers the temperature jump is considered 

L41Ql. 
The augmentation of heat transfer through the use 

of extended surfaces is explored in a number of papers. 

The general efficacy of finned tubes in heat exchangers 
is considered and shown to nearly double the heat 
transfer accomplished with plain tubes [7lQ]. For 
convective pins with uniform internal heat generation 
optimal dimensions are sought [SSQ]. In a vertical- 
tube heat and mass exchanger involving an external 
water film and internal air flow spaced transverse 
wires are used to promote the process [I lOQ]. For the 
case of the bayonet tube heat exchanger the influence 
of radiation heat transfer is analyzed [58Q] and for a 
finned wall located in cross-flowing air in a rect- 
angular duct the heat transfer and pressure drop are 
studied experimentally [64Q]. For industrial finned 
tubes performance characteristics are given using 
dimensional parameters [54Q]. 

The fouling of heat exchangers during use evades 
solution since relatively little is known about the 
underlying mechanisms. The precipitation and par- 
ticulate fouling on the heat transfer surface is con- 
sidered [53Q]; the scaling of plain and externally 
finned heat exchanger tubes reported [99Q] ; and the 
results of new investigations of surface fouling by 
sedimentation and crystallization described [52Q]. 
The control of heat exchangers with tube-side chemi- 
cal reaction fouling is simulated [24Q]. To combat 
fouling ref. [47Q] describes the fluid bed heat ex- 
changer developed in the Netherlands which depends 
on fluidized particles in the exchanger tubes to break 
up boundary layers. Specific applications include the 
effect of ash deposits on heat transfer coefficients in 
convective boiler tube banks [SIQ] and other heat 
exchangers [63Q]. To study depositions occurring 
during the processing of milk experiments were con- 
ducted on a platinum wire to gauge the effect of acidity 
and preholding [SQ]. 

Plate type heat exchangers receive consideration 
from a number of investigators. Flow distribution, 
pressure drop and heat transfer are studied exper- 
imentally and theoretically [lOQ] ; also an array of 
plates aligned at angles to the flow in a duct [56Q]. 
The flow mechanisms involved in the performance of 
interrupted-plate exchangers is studied [70Q] and a cal- 
culation method for evaporators with vertical chan- 
nels [3OQ]. In a two-part study the fluid flow [112Q] 
and heat transfer [55Q] in a plate-fin and square-tube 
exchanger is analyzed. Matrix heat exchangers are 
studied in ref. [7Q] where a procedure is proposed 
for calculating the performance characteristics of an 
exchanger made of perforated plates and in ref. [16Q] 
where the performance of laminar flow heat transfer 
in fine matrices is assessed theoretically and confirmed 
experimentally. A mathematical model of heat and 
mass transfer on the rotating evaporator surface in a 
centrifugal molecular still is developed [37Q] and the 
results given for a wall-type, air-to-air, counter flow 
exchanger used in ventilation practice [lOSQ]. Two 
studies deal with the design aspects of plate heat ex- 
changers, one describing exchanger dimensions and 
performance in terms of basic dimensionless groups 
[22Q], the other outlining a procedure for obtaining 



2480 E. R. G. ECKERT et al. 

simple models from the generalized flow diagrams of 
the exchanger [84Q]. 

Tube heat exchangers are joined by a new design 
which is said to minimize the two most serious equip- 
ment problems: surface fouling and gasket leakage 
through a redesign of the transfer surface geometry 
and fluid flow pattern [62Q]. Other papers describe a 
variety of approaches to improve exchanger per- 
formance : the use of dented tubes [89Q] ; the vortex 
flow in twisted tubes [ 1841; effect of interbaffle spac- 
ing on heat transfer and pressure drop [ 10341; and 
the effectiveness of series assemblies of divided-flow 
heat exchangers [77Q]. Thermal expansion of a duplex 
exchanger tube alters the gap-dependent contact 
resistance at the interface giving rise to more than one 
steady-state solution [SQ]. Further special consider- 
ations include : exact transient solutions of parallel- 

current transfer processing [57Q] ; the dynamic anal- 
ysis of a multi-concentric cylindrical heat exchanger 
[lOSQ] ; the determination of transfer coefficients in 
a short-tube economizer operating in the transition 
region [75Q] ; and a transient exchanger evaluation 
test for arbitrary fluid inlet temperature variation 
and longitudinal core conductance [69Q]. 

Crossflow heat exchange studies include heat trans- 
fer in tube bundles at low Reynolds numbers [36Q], 
the dynamic behavior of such heat exchangers [23Q], 
and an analysis of crossflow heat exchangers [ 107Q]. 
Related to these studies is one examining two-pass 
counter crossflow heat exchangers with both fluids 
unmixed throughout [28Q]. 

An experimental study [66Q] reports shell-side local 
heat transfer coefficients in single phase flow. 

The following papers are distinguished by the spe- 
cial circumstances attending the investigation : feasi- 
bility and performance curves for intermittent earth 

tube heat exchangers [82Q] ; the design of multi- 
tubular reactors with heat carrier flowing parallel to 
tubes [ 10441; heat exchange in oil boilers [98Q], and 
pressure drop and heat transfer in gas-cooled rod 
bundles [34Q]. In a similar vein, there are reports on 
heat transfer from parallel-horizontal cylinder rows 
under corona discharge [49Q]; the theoretical cal- 
culation of the thermal efficiency of an evacuated 
tubular collector [94Q], and an assessment of the air- 
side performance of air-cooled heat exchangers [12Q]. 

For design purposes there are some general dis- 
cussions [25Q, 2641 as well as specific topics: com- 
puter controlled dimensioning of bundled-tube heat 
exchangers [91Q], direct calculation of exchanger exit 
temperatures in concurrent flow [83Q]; the design of 
an apparatus for heat exchange using saturated and 
underheated superfluid helium (He II) [l lQ] and 
design criteria for nuclear heat exchangers in 
advanced high temperature reactors [73Q]. Shell-and- 
tube exchangers having improved design features 
[87Q] and charts for estimating the performance and 
design of heat exchangers [106Q] concludes the design 
aspects. 

Unusual application of heat transfer occurs during 

the use of an inverse finite element to analyze station- 
ary arc welding processes [33Q], a report on platinum 
black powder as a heat exchanger material at low 
temperatures [88Q], and the design of aeroassisted 
orbital transfer vehicle heat shields for a drag brake 

179Ql. 
Heat pipes are a major area of activity. A review 

paper [97Q] presents the basic concepts, recent inno- 
vations in design and applications ; others discuss tem- 
perature drops in heat pipes [92Q] and the effect of 
different configurations on performance of heat pipe 
recovery systems [6Q]. Fluid mechanics effects con- 
cern a number of investigators : analysis of vapor flow 
in a double-walled concentric heat pipe [20Q], the 
onset of flows and stabilities in parallel loop devices 
[I 1741, flow pattern observations in a circular open 
thermosyphon [l 1 IQ], vapor flow features in slender, 
cylindrical units (numerical) [72Q], and the initiation 
of fluid motion in a toroidal heat pipe [116Q]. In space 
application, the formation of excess liquid in orbital 
tests of axially grooved heat pipes is reported [67Q]. 

For closed thermosyphons, the effects of pressure 
and inclination over a wide range are noted [27Q] ; 
another work [78Q] stresses the effect of inclination 
on the limiting heat flux, and a third [3Q] considers 
the heat transfer efficacy of heat pipes with continuous 
corrugated wicks. For low temperature devices ref. 
[5OQ] considers the influence of heat flow charac- 
teristics upon the vapor flow and ref. [49Q] reports 
on experiments revealing the operating regimes under 

nearly isothermal conditions. The calculation of heat 
pipe parameters at high temperature is considered 
[59Q] and an outdoor method for testing an evacuated 
tubular collector with heat pipe for solar application 
described [44Q]. Also for solar conditions, an analysis 
of a heat pipe absorber array is given [35Q]. 

Further specific applications consider a heat pipe 
economy cycle [95Q], a gravity assisted device used 
with concrete shell steam condensers [45Q] per- 
formance of gravity-assisted potassium units [SOQ], 
and the maximum heat flow for a system using a 
sulfur-iodine mixture (600-900 K) [ 1 OOQ]. 

Regenerators receive the attention of a number of 
workers. A procedure of selecting the optimum matrix 
for stacked wire gauges is described [29Q] and the 
thermal performance of diabatic cyclic devices 
analyzed [3 lQ]. To improve the cold-side heat transfer 
coefficient consideration is given to injecting steam 
because of its radiation properties [39Q]. Two-dimen- 
sional heat transfer analysis is used to study high 
temperature exchange in a closed power cycle MHD 
regenerator [114Q]. For a regenerator of finite mass 
the performance of a Stirling engine is reported [42Q]. 

The thermodynamics of heat exchangers enters 
from a number of viewpoints. Such considerations 
appear in the design of long-life, high temperature 
devices [I lSQ], in assessing losses due to exchanger 
irreversibility [43Q] and the entropy generation in 
such processes [96Q]. Natural circulating water sys- 
tems are subject to thermodynamic analysis [4OQ]. 
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Using load curves, heat exchanger networks are opti- 

mized from a second law viewpoint [15Q]. In a two 
part study of performance of a scraped-surface heat 
exchanger the principal models for heat transfer and 
power consumption are reviewed [6OQ] and the effect 
of the axial diffusion of heat [6lQ]. Thermal energy 
recovery systems generally are subjected to thermo- 
dynamic optimization [38Q]. Further work on heat 
exchanger networks include a combined energy-econ- 
omics approach [32Q], the synthesis of flexible nets 
for multiperiod operation [2lQ], and the influence 
of pinch phenomena in providing improved network 
synthesis [86Q]. 

Several aspects of vapor generators and evap- 
orators receive study. Correlations for rifled tubing in 
variable pressure boilers are given [65Q], the heat 
transfer in critical and supercritical zones of sodium- 
water vapor generators reported [46Q], and a boiler 
described [14Q] which uses radiator elements for 
steam generation from solid fuel. For the stationary 
heating-plane of indirectly heated dryers heat transfer 
coefficients are provided [76Q] and a monograph 
devised for predicting the hydrostatic head effect in 
process plant evaporators [9OQ]. 

HEAT TRANSFER APPLICATIONS-GENERAL 

Several papers dealt with heat transfer in electronic 
and electrical devices. Empirically derived natural 

convection correlations extracted from the scientific 
literature were compared with non-dimensionalized 
data obtained from physical models of uniformly 
heated electronic circuit cards vertically mounted in a 
frame [25S]. A thermal model for a hybrid IC in which 
the conductive heat transfer takes place from one or 
two large surfaces of the substrate in any combination 
with the ends was presented [2S]. A simulation model 
was used to predict the temperature rise for multi- 
chip electronic packages [24S]. Methods of effectively 
cooling computers and high performance electronic 
modules were presented along with several examples 
[49S]. The finite element program ANSYS was used 
to evaluate the temperature distributions, both steady 
state and transient, for a squirrel cage motor winding 
[14S]. A generic three-dimensional thermal model 
was developed for analyzing the thermal behavior of 
electric vehicle batteries [37S]. The transient three- 
dimensional conduction equation with a source 
term that accounts for the propagating resistive wave 
front has been solved for a superconducting magnet 
coil [ lOS]. Temperatures and current decay have been 
evaluated during superconducting magnet coil quench 
[2&S]. 

A review was made of numerical computations of 
air movement and convective heat transfer within 
buildings [65S]. The effect of a paint coating on the 
radiative and convective heat transfer from a surface 
was investigated by treating the coating as a non-gray 
absorbing, emitting and anisotropically scattering 
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medium [35S]. Simple models of the coupled heat 
transfer in a typical light fitting were developed [67S]. 
The dynamic behavior of a liquid convective diode 

for space heating of passive solar buildings was 
explained by theory and experiments [26S]. The gen- 
eral conduction equations were presented and solved 
for large space structures consisting of bar-like mem- 
bers [56S]. 

Two papers reported numerical and experimental 
studies of the heat transfer characteristics of a latent 
heat storage unit containing a circular-finned tube 
[22S, 23S]. A one-dimensional numerical model of a 
single tank for stratified thermal storage included the 
effects of through-flow conditions, and conduction 
and turbulent mixing within the water [5OS]. The 
assumption of lumped heat capacity in analyzing a 
thermal storage system was shown to lead to over- 
estimates of the magnitude of the thermal flux in or 
out of the storage [59S]. 

A coupled heat and mass transport model was used 
to simulate water and heat movement in soil under 
freezing conditions [34S]. The complex variable 
boundary element method (CVBEM) has also been 
applied to the problem of predicting freezing fronts 
in soils [2lS]. A study of the energy balance of drying 
bare soils indicated that the major errors of using 
null-point calorimetry to estimate soil heat flux and 
thermal conductivity are likely to arise from net evap- 
oration in upper soil layers [9S]. A thermal analysis 
provided information on the effectiveness of open field 
burning on destroying soil bound microorganisms 

WI. 
The dynamic response of a single-pass crossflow 

heat exchanger, with both fluids unmixed, to arbitrary 
time varying inlet temperatures of fluids was inves- 
tigated analytically [ 16S]. Modeling studies compare 
favorably with experimental results for the per- 
formance of a horizontal coil ground-coupled heat 
pump [7S]. An analytical model of transient, sim- 
ultaneous heat, water and air transfer was used to 
study drying front movement near low-intensity, 
impermeable underground heat sources [8S]. The 
steady-state rates of heat transfer to a cold horizontal 
pipeline within an atmospheric pressure, air-filled, 
horizontal rectangular cavity with relatively hot iso- 
thermal walls, have been determined experimentally 
[3S]. Investigations were carried out to study the boil- 
ing heat transfer and flow distributions in an evap- 
orator using an oil-fluorocarbon binary mixture [54S]. 
In a proposed model of the heat transfer in a liquid- 
liquid spray column, heat is transferred directly from 
the dispersed phase to the continuous phase as well 
as indirectly through the wake [6OS]. 

The high temperature insulating properties of 
unevacuated horizontal multilayer insulating systems 
were reported [18S], and two design criteria for opti- 
mizing performance were presented [29S]. The insu- 
lating ability of a multi-layer insulation system, con- 
sisting of a few layers on an aluminum taped 77 K 
surface, was studied experimentally to understand 
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quantitatively how thermal performance changes 
with the number of multilayers and vacuum level 

[58S]. 
Heat loss and angular momentum decay in a con- 

stant volume cylindrical vessel is of interest because 
the flow has features similar to those in internal com- 

bustion engines [63S]. The considerations presented 
in ref. [4S] lead to a proposed method of analyzing 
the instantaneous heat transfer between working fluid 
and combustion chamber and included the influences 
of the turbulent flow field and radiation. Individual 
states of heat flux distributions and heat losses of 
the cylinder head, intake and exhaust valves of each 
stroke have been determined experimentally for a 
four-stroke gasoline engine [l lS]. The effect of gas 
temperature on the heat transfer coefficient between 
the gas mixture and cylinder wall of a four-stroke 
gasoline engine was studied [69S]. The effects of gas 
flow (swirl and squish) and fuel spray jet on local 
instantaneous heat flux on the piston crown of a small 
size direct injection diesel engine were investigated 
experimentally [ 18S]. The piston temperature dis- 
tribution as a function of engine speed and load was 
analyzed for a diesel engine [27S]. It was shown that 
the analysis of heat transfer in tube bundle heat ex- 
changers can be applied with high accuracy in predict- 
ing cooling of an inline combustion engine [66S]. 
Experimental measurements were presented of the 
fundamental frequency, pulsation pressure ampli- 
tude and heat transfer coefficient in a natural-gas-fired 
pulsating combustor [17S]. 

Individual papers dealt with a variety of devices. 
An analytical method was presented for computing 
the cooling performance and pressure loss in internal 
convective steam-cooling gas turbine blades of return 
flow type [48S]. In a study of the heat transfer in an 
axial compressor casing, a non-uniform distribution 
of the heat transfer coefficients over the casing seg- 
ments were observed [39S]. Comparisons were made 
of the heat transfer coefficients of various oil-cooling 
systems for commercial-vehicle light machines [ 12S]. 
Flow visualization studies were used to help explain 
the effect of working fluid type on the heat transfer in 
circular open thermosyphons [68S]. Thin film heat 
flux gauges and flow visualization techniques were used 
to investigate heat transfer to the walls of a two- 
dimensional scramjet combusion chamber [44S]. The 
temperature rise of a spur gear tooth due to a repeated 
moving heat source was modeled [47S]. Temperature 
measurements in full circular bearings show that the 
maximum temperature increases considerably with 
increasing speed or lubricant viscosity and with 
decreasing clearance ratio [42S]. 

The heat transfer aspects of a wide variety of pro- 
cesses were considered. A numerical simulation was 
used to analyze the effect of air bubblers on glass-melt 
circulation and heat transfer in a glass-melting tank 
[62S]. A numerical simulation of a rotary dryer was 
described [3 1 S]. The intensity of cooling was measured 
on three commercial coolers of rubber and the results 

were interpreted with the aid of a simplified, one- 
dimensional model [19S]. Temperature distributions 
in the vortex flow target system of an accelerator 
breeder reactor were predicted [41S]. In gas-driven 
hydraulic fractures, as occur in rock blasting and 
underground nuclear testing, the high temperature 
gases are radically cooled by heat transfer to the host 

material [ 15S]. 
A mathematical model of heat and mass transfer in 

the cooking of a meat loaf has been derived [2OS]. 
A dimensionless correlation of the heat transfer 
coefficient between the barrel wall of a food extruder 
and the extrudate was presented [38S]. 

The progress in the development of methods, 
models, and software for analyzing or simulating the 
flow of heat in welds was summarized [ 13S]. The con- 
tributions and the importance of the different heat 
transfer modes during arc welding were assessed [55S]. 
A mathematical model was developed to predict the 

velocity, temperature, and current density dis- 

tributions in inert gas welding arcs [4OS]. A method 
to apply forced convection heat transfer by gas jet 

impingement to weld metals deposited by the GTA 
weld process was described [64S]. The problem of 
steady-state and transient heat transport associated 
with thin-plate welding was formulated and solved 
using a finite element method [33S]. 

Two papers described numerical techniques used to 
analyze the temperature field in the cutting zone 
during metal cutting [46S, 51S]. The authors of ref. 
[5S] addressed the contact thermal problem for a fric- 
tion pair consisting of tool and structural materials 
that are in continuous plastic sliding contact. Evap- 
orative cutting of a semi-infinite body with a moving 
CW laser was considered [43S]. Results were pre- 
sented of an experimental examination of contact heat 
exchange during metal forming processes [36S]. An 
analysis was conducted of the temperature dis- 
tribution in a tubular specimen subjected to high 
frequency induction heating [45S]. The convective 
heat transfer coefficients for cylinders under nozzle 
fields were determined systematically in a preheating 
chamber model as a function of the nozzle field par- 
ameters for the application of the reheating round 
billets. 

An initial solidification analysis in the vicinity of 
the meniscus in continuous casting was performed 
[61S]. Research examined the influence of withdrawal 
speed and the frequency of mold oscillation on heat 
transfer through the mold walls [53S]. 

Transient temperature distributions in human skin 
and subdermal part exposed to cool environment with 
negligible perspiration and moderate environment 
were investigated [57S]. 

The concept of resonant heat transfer enhancement 
based on excitation of shear-layer instabilities present 
in internal separated flows was introduced [52S]. 

The small-scale structure of forced, turbulent flows 
developed after Taylor and Kolmogorov was ex- 
tended to that of buoyancy-driven flows [ 1 S]. 
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SOLAR ENERGY 

The U.S. National Bureau of Standards solar col- 
lector test program was reviewed and recommenda- 
tions made regarding the use and limitations of 
the thermal performance measurements [51T]. An 
analytical solution is presented for heat transfer 
in flat plate collectors that accounts for duct design 
and the thermal developing region [33T]. An analy- 

sis is developed for a flat plate air heating collector 
in which a partial second glazing improves the ther- 
mal efficiency for long absorber plates [12T]. Col- 
lector efficiency vs Graetz number is given for air flow 
in the triangular ducts of a V-groove collector [19T]. 
Simulated performance of a compound parabolic con- 
centrator is compared with corresponding flat plate 
collectors in which low concentration CPC designs are 
shown to have superior thermal performance [20T]. 

Experiments and finite difference numerical analysis 

are performed to study the effects of eleven design and 
operating parameters for an evacuated tube collector 

[4OT]. The thermal efficiency of a co-axial heat pipe 
collector was measured for half-hour periods to deter- 

mine the effect of mean fluid to ambient temperature 

difference [4TJ The effect of optical depth on a solar 
collector in which the solar energy is collected directly 
by a semi-transparent working fluid was investigated 

theoretically and experimentally [7T]. A two-dimen- 
sional analytical solution is developed which is used to 

simulate the direct absorption of solar energy within a 
liquid film flowing downward over a solid wall within 
a cavity receiver [31T]. Single and two-phase flow heat 

transfer is studied in the helical absorber tubes at the 
focal point of a paraboloidal concentrator [49T]. A 
method is established which can be used to measure 

complex radiative-convective heat transfer in high 
temperature solar receivers [36T]. A network heat 
transfer model is presented which predicts the tem- 
perature distribution in terrestrial photovoltaic arrays 

[24T]. 
A steady-state method of predicting the monthly 

thermal performance of solar ponds is compared with 
detailed hourly numerical simulations [25T]. Good 
agreement is found for both monthly and annual ther- 
mal performance. Heat transfer models for steady 
and unsteady operation of a shallow solar pond are 

presented and the results are compared with cor- 
responding experimental data [3OTJ The results of a 
nine month test of a small salt-gradient solar pond 
are presented [ 16T]. Experimental temperature and 
salt concentration measurements are given for various 
lower convective layer temperatures in 5°C increments 

[IOT]. A comprehensive literature review of double- 
diffusive effects on solar ponds is made [34TJ. One- 
dimensional numerical simulations are used to deter- 
mine the optimum thickness of the non-convective 
zone in a solar pond [8T]. The results indicate that the 
optimum thickness changes from month to month. 
The effect on heat loss through various materials 
below a solar pond is analyzed [9T]. An analytical 

stability analysis for the non-convective zone of a 
solar pond is given in which the logarithms of the 

concentration and thermal gradients are found to be 
related by a simple equation [ 111. Experiments indi- 
cated that instabilities occur at the location of mini- 
mum salinity gradient and these instabilities are con- 
fined to a narrow region [29T]. Alternate heat removal 
mechanisms are analyzed which shows that heat 
extraction can be increased as much as 62% over 
convectional solar pond heat extraction techniques 
[32T]. 

A model is presented for stratified liquid sensible 

heat storage systems when the fluid enters at the 
location of zero temperature difference [ 15Tj. Various 

mathematical models are compared to predict the 
charging time required for sensible liquid storage 
tanks [38T]. A storage system is modeled using a 
random walk procedure to determine the distribution 
of energy stored [35T]. A study is given in which 
the geometry and heat transfer rate to a packed bed 
thermal storage system is analyzed [14TJ Accumu- 
lator heat exchangers are studied with applications to 
solar absorption cooling systems [42T]. The thermal 
performance of a 30 kW storage unit using poly- 
ethylene rods and ethylene glycol was evaluated exper- 
imentally [27T]. An explicit one-dimensional finite 

difference model was employed to simulate the heat 
transfer characteristics measured in the previous ref- 
erence [28T]. An experimental study was performed 
on the heat transfer of calcium chloride hexahydrate 
surrounding a coaxial water filled heat exchanger pipe 
[54T]. Two different stacking and baffle arrange- 

ments were tested with phase change material rods 
located under the floor of a solar heated greenhouse 

123~1. 
A theoretical and experimental study of a ther- 

mosyphon solar water heater system showed that 
overall thermal efficiency was higher for a flat plate 
absorber than a tube-in-sheet absorber [55T]. A theor- 
etical model has been developed to predict the per- 
formance of thermosyphon solar water heaters with 
a heat exchanger in the storage tank under various 
load conditions [39T]. The lack of thermal insulation 
on the upper pipe of a thermosyphonic hot water 
system was found to be very detrimental to system 
performance as it may result in backflow from the 
storage tank to the collector [50T]. The thermal per- 
formance of a collector array on a residence was deter- 
mined including the effective array absorptivity and 
loss coefficient [26T]. Simple analysis of integral solar 
water heaters were found to be limited in their ability 
to provide an accurate guide to the thermal per- 
formance under actual service conditions [48T]. A 
lumped parameter model is given for an integral water 
heating collector which shows good agreement with 
experimentally measured mean water temperature 
[56T]. Storage of solar energy in a mixture of sand 
and iron filings that surrounds a buried water pipe is 
analyzed to determine the effect of service conditions 
on the overall efficiency [12T]. A theoretical study of 
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solar thermal storage in the ground is presented with 
applications to drying [ lT]. 

Activated charcoal and methanol were used to con- 
struct a diurnal cycle solar powered ice maker that 
produced 35 kg of ice on a sunny day with 6 m* of 
collector area [37T]. An analysis is presented of a 
closed type solar powered adsorption cooling system 
which showed good agreement with existing exper- 
imental data [41T]. A method is devised to model a 
solar powered absorber-generator to determine the 
temperature of the absorbent [44T]. 

A simple algebraic model for evaluation of the aver- 
age performance of passively heated residences is 
given which is suitable for both direct gain and storage 
wall systems [22T]. The development and application 
of a thermal network model is presented to simulate 
the thermal performance of passively heated direct 
gain rooms [3T]. The operating characteristics of a 
Trombe wall for preheating ventilation air in a far- 
rowing house were measured [45T]. Experimental 
measurements on a lattice solar wall show that it 
performs better than a convectional solar wall [53T]. 
Solutions to thermal networks are given representing 
simulation of structures with a flat brick roof or a 
lightweight adobe domed roof with and without moist 
interior surfaces [5T]. The effect of ventilation air flow 
rate is found to be significant in passively heated solar 

structures [47T]. 
Seasonally dependent correlations are developed to 

predict the daily ratio of diffuse to total radiation 
incident on a horizontal surface [46T]. An analytic 
method is described for calculating daily averages of 
solar angles and air mass from long-term average data 
[21T]. A linear correlation between monthly average 
daily global solar radiation and sunshine duration is 
presented which agrees with annual values to within 
4% [6T]. The distribution of atmospheric aerosol is 
shown to cause an error in the Langley method of 
determining the solar constant by up to 3% [43T]. 
The solar transmissivity as a function of incidence 
angle is measured with a solar simulator for a variety 
of materials and coating [17T]. Two models are pre- 
sented to predict the solar transmission through layers 
of water and glass representing a stack of glass bottles 
in a liquid [52T]. Solar radiation propagating through 
turbid media is modeled analytically to simulate the 
photon flux through plant tissue [ 18T]. Relationships 
between chemical treatments of stainless steel and the 

optical properties of the coatings are discussed rel- 
evant to using the coatings as a solar absorber surface 

P-U. 

PLASMA HEAT TRANSFER 

The number of papers related to plasma heat trans- 
fer showed a substantial increase during the past year. 
Many papers dealt with electric arcs and their appli- 
cations. 

The stable configuration of an arc in crossflow is 
due to heating at the leading edge and enhanced 

cooling of the trailing section. This is achieved by 
gradients of ohmic heating and heat conduction 
across the arc caused by its curvature [48U]. In arcs 
with superimposed flows, turbulent heat and mass 
transfer frequently exerts a decisive influence on the 
shape of the arc and on its energy characteristics 
[82U]. A semiempirical model of turbulence is pro- 
posed for describing the interaction of an electric arc 
and a turbulent gas flow [4U]. Calculated charac- 
teristics of an electric arc burning in a turbulent air 
flow in a long cylindrical channel are compared with 
experimental data [3U]. Theoretical studies of the 
thermal contraction of an arc channel at the anode 
passing through a turbulent plasma boundary layer, 
indicate that an instability in the heat balance develops 
along the falling part of the current-voltage charac- 
teristic [36U]. 

Studies of the physical processes in gas-tungsten 

arcs (welding arcs) indicate that the addition of 0.1% 
cerium to an argon arc can lead to marked changes 
of the arc properties [27u]. Spectrometric measure- 
ments of the temperature fields in gas-tungsten arcs 
using water cooled and molten anodes indicate little 
temperature variation in spite of anode vapor con- 
centrations of up to 2500 p.p.m. in the vicinity of 
the anode in the case of a molten anode [21U]. The 
composition as well as the electric and thermal con- 
ductivity of a Cu-air plasma have been calculated at 
atmospheric pressure for temperatures from 5000 to 
14 000 K and for different Cu content. The properties 
of the plasma change substantially in the presence of 
metal vapor [61U]. A spectroscopic analysis of the 
plasma generated by a double-flux tungsten inert gas 
(TIG) arc torch shows that the plasma is dominated 
by metallic vapor species in the vicinity of the molten 
anode, while a nearly pure argon plasma is observed 
in the cathode region of the arc [ 14U]. There is a strong 
correlation between arc voltage and anode erosion in 
an N, arc at atmospheric pressure. Metal vapor in 
the arc seems to decrease the electrical conductivity 
resulting in a corresponding voltage increase [68U]. 
Contamination of an arc plasma by electrode vapor 
depends strongly on the existence of electrode jets 
which are responsible for carrying and distributing 
such contaminants [41U]. 

A computerized spectroscopic system for analyzing 
LTE and non-LTE plasmas has been developed with 
automatic correction for self-absorption [73U]. The 
magnetic field used to rotate an arc also enhances the 
spectral lines indicating a non-LTE condition [22U]. 
An approach is presented for handling radiative trans- 
fer in high pressure plasmas where collision broad- 
ening dominates self-absorption [83u]. Studies of long 
free-burning vertical arcs in atmospheric air reveal 
axis temperatures around 7000 K [47U]. 

Optical measurements, including spectrometric 
temperature measurements in SF6 high-current arcs 
(up to 2.6 kA) are in good agreement with calculations 
based on LTE [29U]. Using differential interfer- 
ometry, the temperature distribution in the up- 
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stream and downstream regions of a dual flow orifice 
nozzle arc interrupter have been measured with 
emphasis on the thermal boundary layer (arc mantle) 
surrounding the arc [69U]. Results of investigations 
of the nozzle ablation process in high-power arc circuit 
interrupters are reported which include radiative emis- 
sion and absorption measurements [32u]. Local 
overheating of the contacts of a circuit breaker may 
be avoided by designing the contacts so that their 
magnetic field induces rotation of the arc [3OU]. An 
improved model for circuit-breaker arcs makes it 
possible to predict the breaker thermal short-circuit 
interruption performance within the entire range of 
practical interest [SOU]. The observed nozzle ablation 
in SF, circuit breakers is mainly determined by the 
geometry of the arcing device [53U]. An ablation arc 
model applied to ablation controlled arcs allows to 
quantify the phenomena related to nozzle clogging in 
gas-blast circuit breakers, namely flow blocking and 
reverse flow heating [71U]. The dynamic behavior of 
nozzle arcs is governed by the close coupling between 
the arc and its external flow [2OU]. The post-arc heat 
diffusion from an arc developed due to flash over 
on open insulation may play a decisive role in the 
recovering of the dielectric strength of the ruptured 

gap [7W. 
A method has been developed for measuring the 

net heat flux to a hot evaporating cathode in a vacuum 
arc with diffuse cathode emission [62U]. A dynamic 
model of the cool-down phase of an inactive cathode 
crater of a vacuum arc is used for determining the 
solidification time for Cu and W taking heat conduc- 
tion, phase changes, the motion of the melt and sur- 
face cooling due to evaporation and radiation into 
account [66u]. Studies of the spot behavior and of 
local cathode heating in high-current (90&3000 A) 
and low-current (20-60 A) arcs show that three differ- 
ent conditions can occur leading to local heat accumu- 
lation at the cathode : spot grouping, prolonged spot 
attachment, and repeated return to previous attach- 
ment sites of individual spots [9U]. Investigations of 
the cathode arc plasma flow in a Knudsen layer show 
that the evaporation rate in the cathode spot depends 
on the processes providing the ion flux in the cathode 
region which is required to maintain the thermal bal- 
ance of the cathode [6U]. Experimental data of cath- 
ode crater formation in vacuum arcs are in good 
agreement with an analytical model taking phase 
changes, Joule and ionic heating, electron emission, 
and mass loss due to evaporation and ejection of 
molten metal into account [67U]. The dominant 
erosion mechanism of cathodes in a vacuum-arc 
centrifuge seems to be via ions which return to the 
cathode surface across a collisionless sheath [65U]. 

Experimental studies of arc-generated flow 
phenomena in repetitively pulsed gas flow spark gaps 
are in qualitative agreement with analytical studies 
confirming that heated gas convects at the undis- 
turbed gas velocity [45U]. Based on experimental 
data, a simple model has been developed which 

describes the recovery of a spark gap with gas flow 
[46u]. During the arc phase of an automotive spark 
in air, the maximum temperature of the arc plasma 
was found to be 4600 K derived from the slope of 
the continuum radiation [63U]. Studies of the radial 
variation of plasma parameters in a pulsed low-pres- 
sure (lO&lSO Pa) arc in He indicate a maximum 
electron density of 3.3 x 10zl me3 and a maximum 
electron temperature of 3.85 eV [lU]. An electric arc 
heat source may move with speeds comparable to the 
rate of heat propagation. Results based on a gener- 
alized model of this situation show that the largest 
value of the temperature is reached considerably 
sooner than by neglecting the inertia of the heat source 

139ul. 
A transferred arc plasma reactor has been used for 

arc melting, reprocessing, and upgrading of critical 
materials and alloys [7Ou]. Besides other heat transfer 
mechanisms, conditions due to evaporation processes 
have been included in the analysis of heat transfer by 
water cooling of wall segments of arc furnaces with 
emphasis on design criteria not to exceed the critical 
heat flux [72U]. Studies of the molten metal pool, in 
a vacuum arc melting furnace indicate that the pool 
exerts a strong influence on the ingot, especially when 
melting of titanium alloys from the compacted elec- 
trode is considered [3 1 U]. A model has been developed 
for describing thermoconvective emissions from an 
open vault arc furnace for determining the proper 
procedure and dimensioning of a system for capturing 
and control of fumes, dust, and energy [58U]. A single- 
roller rapid quenching device with a plasma-arc torch 
and a water cooled Cu hearth has been developed for 
rapid quenching of high melting temperature alloys. 
Amorphous ribbons of Nb&&,, Nb,Ge, and Ta- 
(Si, B) alloys have been obtained and amorphous 
Nb,Ge showed a superconducting transition tem- 
perature of 18.3 K after heat treatment [44u]. 

Measurements of heat and momentum transfer of 
powder particles injected into an atmospheric pressure 
plasma jet arc compared with predicted values [SOU]. 
A simple analytical method, the Z-potential method, 
is proposed for particle-gas mass transfer calculations 
under plasma conditions [33U]. Measurements of heat 
fluxes to spherical models and plane surfaces exposed 
to plasma jets are compared with experimental results 
of other authors [16U]. A numerical model describing 
melting of small particles injected into a thermal 
plasma jet is used to predict optimal parameters for 
plasma spraying [26U]. Heat fluxes to a sphere 
exposed to a two-temperature plasma in the molecular 
flow regime are independent of the sphere size and 
approximately proportional to the gas pressure [12U]. 
Results are presented of a comparison of the effec- 
tiveness of heating disperse polymers in gas flames 
and in plasma streams [37U]. LDA measurements 
of the velocities of alumina particles injected into a 
plasma jet reveal values from 20 to 60 m s-’ [49u]. 

Transport coefficients of a chemically reacting 
plasma in the presence of a magnetic field may be 
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calculated by using the Chapman-Enskog approach. 
Sample calculations for a potassium-seeded argon 
plasma are presented [56u]. Calculations of ther- 
modynamic and transport properties of SF,-N, mix- 
tures in the temperature range from 1000 to 30 000 K 
and pressures from 1 to 10 atm indicate that chemical 
reactions exert a strong influence on thermal con- 
duction and heat capacities [24U]. The total rate 
coefficients used in a simplified collisional-radiative 
(SCR) model have been calculated for thermal nitro- 
gen plasmas at atmospheric pressure [5U]. Significant 
departures from standard transport coefficients have 
been found for the electron current and heat flux in a 

fully ionized plasma with errors up to 65% [18U]. 
Results based on a model describing the structure of 
a plane and stationary ionizing current sheath taking 
radiation transport into account, indicate that radi- 
ative losses can be very high, reaching about 30% of 
the available power [SU]. Effective recombination and 
ionization coefficients are calculated for optically thin 
and optically thick non-equilibrium nitrogen plasmas, 
using a time-dependent approach based on a col- 
lisional-radiative model [77U]. 

A strong vortex producing a ‘gas tunnel’ for an 
electric arc proves to be a useful tool for producing 
high energy density plasma jets [2U]. Temperature 
measurements in the jet of an inductively-coupled 
nitrogen plasma at pressures of 0.1 and 0.3 atm con- 
firm previous conclusions that the rotational tem- 
peratures are identical with the gas temperature [23U]. 
High-pressure argon plasmas with temperatures up to 
11000 K have been produced by gas compression. 
Comparisons with analytical results show the impor- 
tance of radiation losses and boundary layer effects 
[34U]. Numerical results of swirl flow cooling in high- 
heat-flux particle beam targets and swirl-flow-based 
plasma limiters indicate that local heat fluxes in excess 
of 7 kW cme2 occur at the water-cooled surface on 
the side exposed to the beam [55U]. 

For an Nd-glass laser (1 = 1.06 pm, p - lOI W 
cm-*) interacting with a plasma (n z 10” cmm3), the 
induced magnetic field is found to be of the order 
of 100 T, affecting electron thermal conduction and 
inhibiting heat transport [llU]. Two types of dis- 
charge heated longitudinal Sr+ recombination lasers 
have been investigated : a low heat loss configuration 
using input powers of 350 W, and a high heat loss 
configuration with 1 kW power input to the discharge 
tube [51U]. Studies are reported on how the effects of 
deviations from MaxwelllBoltzman electron energy 
distribution, that are characteristic of heat transport 
in laser-produced plasmas, could modify the interpret- 
ation of such experiments [19U]. Calculated plasma 
size, peak temperatures, global absorption charac- 
teristics, and thermal efficiencies of laser-sustained 
plasmas in axisymmetric flows are in good agreement 
with experiments [25U]. Results of a study of laser- 
sustained plasmas in flowing argon using a pressurized 
absorption chamber and a 10 kW CO, laser indicate a 
total absorption of up to 80% and thermal conversion 

efficiencies in the range from 6 to 25%, depending on 
pressure, flow rate, and laser power [43U]. Quan- 
titative results of another study of laser-sustained 
plasmas in argon flow clearly indicate that a perceptive 
analysis of such laser-sustained plasmas must take 
into consideration the two-dimensionality of both the 
flow field and the laser energy distribution in the 
focused beam [35U]. 

Synthesis of ultrafine SIC powders in thermal arc 
plasmas reveals a bimodal distribution of the particle 
sizes with the majority of the particles falling in a size 
range from 2 to 40 nm [4OU]. The nitriding of niobium 
and tantalum, with argon-nitrogen and argon-nitro- 
gen-hydrogen plasma jets at pressures of 190 and 240 
Torr results in higher nitriding rates than those of 
thermal nitriding at the same temperature [42U]. 
Chromic oxide decomposition in r.f. argon plasmas 
shows that the thermal decomposition conversion of 
Cr,03 into Cr is approximately eight times higher in 
the homogeneous gas phase than in the solid phase 
[54U]. Studies of an r.f. silane plasma show that dis- 
charge power as well as electrode heating increase the 
rotational temperature of silane [28U]. 

For a better understanding of the cathode behavior 
in an MPD arc jet, a transient heat transfer analysis 
has been performed based on solutions of the non- 
linear transient energy equation [52U]. Ion thruster 
performance can be affected by cooling with liquid 
nitrogen. Good agreement exists between the tem- 
perature-induced effects predicted by a simple dis- 
charge model and measured data [SlU]. 

The heat transfer coefficients of parallel-horizontal 
rows of cylinders exposed to a corona discharge show 
an increase as the corona current is increased [38u]. 
An analysis of the conduction-phase characteristics of 
a hydrogen thyratron plasma is based on the sim- 
ultaneous solutions of the Boltzmann equation, the 
rate equations, and the radiative transfer equation 
[64U]. An explicit solution is obtained for the tem- 
perature distribution inside a cylindrical rod with an 
insulated inner core when the rod is allowed to enter 
into a fluid of large dimensions with uniform speed, 
and a simple integral expression is derived for the 
value of the sputtering temperature of the rod at the 
point of entry [lOU]. Experimental Schlieren images 
of the non-cylindrical plasma generated by a plasma 
focus device can be simulated by computers, allowing 
a quantitative analysis of these Schlieren images, 
resulting in electron densities and electron density 
gradients [6OU]. A plasma-electrolytic heating mech- 
anism is described in which an active electrode is 
heated by charged particle bombardment and is 
cooled by heat transfer with the surrounding liquid 
via a vapor-gas shell [75U]. 

Studies of MHD heat transfer in cylindrical 
geometry with a discontinuity in the wall temperature 
demonstrate that the temperature falls as the Hart- 
mann number is increased, and convection dominates 
for large values of the Peclet number [74U]. An exact 
analysis of a generalized MHD Couette flow is pre- 
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sented, taking Hall currents into account [76u]. Con- 
sidering a steady two-dimensional MHD boundary- 
layer flow on a flat plate with a uniform transpiration 
through the constant temperature plate, it is found 
that heat transfer at the plate increases with Joule 
heating, the transpiration number, the magnetic inter- 
action number, and the Prandtl number [ 13U]. Exact 
solutions for hydromagnetic boundary layer flow and 
heat transfer over a continuous, moving, flat surface 
with uniform suction and internal heat generation/ 
absorption are presented [79U]. Studies of unsteady, 
free convection flow of an incompressible electri- 
cally conducting viscous liquid through a porous 
plate in the presence of a transverse magnetic field 
show the effect of various dimensionless parameters 
on velocity and temperature distribution, the skin 
friction, and the heat flux [ 17U]. 

Studies of the simultaneous effects of the magnetic 
field, mass transfer and heat transfer on the steady 
incompressible laminar boundary layer flow of an 
electrically conducting fluid over a non-isothe~al 
cone show that the magnetic field reduces both the 
skin friction and heat transfer [ 1 SU]. The effects of the 
magnetic interaction parameters, the electromagnetic 
loading parameter and the Hall currents have been 
studied on the laminar compressible boundary layer 
physical parameters such as the wall shear stress, the 
heat flux at the wall and the thickness of the boundary 
layer [59U]. 

Multiplex CARS temperature measurements in a 
coal-fired MHD environment indicate maximum tem- 
peratures of 2500 K [7U]. The MHD effects on liquid 
metal cooling of fusion reactors has been exper- 
imentally studied with emphasis on temperature flue- 
tuations [57U]. 
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